OFFSET
0,3
COMMENTS
The row sums of this triangle are b(n) = A005259(n), for n >= 0. This sequence b was used in R. Apéry's 1979 proof of the irrationality of Zeta(3). See A005259 for references and links.
Row polynomials R(n, x) := Sum_{k=0..n} T(n, k)*x^k = hypergeometric([-n, -n, n+1, n+1], [1, 1, 1], x), hence b(n) = hypergeometric([-n, -n, n+1, n+1], [1, 1, 1], 1) (see the formula in A005259 given by K. A. Penson. This is the solution to Exercise 2.14 of the Koepf reference given there, p. 29).
FORMULA
EXAMPLE
The triangle T begins:
n\k 0 1 2 3 4 5 6 7 ...
0: 1
1: 1 4
2: 1 36 36
3: 1 144 900 400
4: 1 400 8100 19600 4900
5: 1 900 44100 313600 396900 63504
6: 1 1764 176400 2822400 9922500 7683984 853776
7: 1 3136 571536 17640000 133402500 276623424 144288144 11778624
----------------------------------------------------------------------------
row n = 8: 1 5184 1587600 85377600 1200622500 5194373184 7070119056 2650190400 165636900,
row n = 9: 1 8100 3920400 341510400 8116208100 63631071504 176752976400 169612185600 47869064100 2363904400,
row n = 10: 1 12100 8820900 1177862400 44188244100 572679643536 2828047622400 5446435737600 3877394192100 853369488400 34134779536.
...
MATHEMATICA
T[n_, k_] := (Gamma[k + n + 1]/(Gamma[k + 1]^2*Gamma[-k + n + 1]))^2;
Flatten[Table[T[n, k], {n, 0, 8}, {k, 0, n}]] (* Peter Luschny, May 14 2018 *)
PROG
(GAP) Flat(List([0..10], n->List([0..n], k->(Binomial(n, k)*Binomial(n+k, k))^2))); # Muniru A Asiru, May 15 2018
CROSSREFS
KEYWORD
AUTHOR
Wolfdieter Lang, May 14 2018
STATUS
approved