login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A028575
Row sums of triangle A011801.
6
1, 5, 49, 721, 14177, 349141, 10334689, 357361985, 14137664833, 629779342213, 31195027543505, 1700812505769169, 101218448336028193, 6528869281965115541, 453720852957751220353, 33796334125623555379969
OFFSET
1,2
LINKS
Wolfdieter Lang, On generalizations of Stirling number triangles, J. Integer Seqs., Vol. 3 (2000), #00.2.4.
FORMULA
E.g.f.: exp(1 - (1-5*x)^(1/5)) - 1.
a(n) = D^n(exp(x)) evaluated at x = 0, where D is the operator 1/(1-x)^4*d/dx. Cf. A001515, A015735 and A016036. - Peter Bala, Nov 25 2011
D-finite with recurrence: a(n) -20*(n-3)*a(n-1) +30*(5*n^2-35*n +62)*a(n-2) -100*(n-4)*(5*n^2-40*n+81)*a(n-3) +(5*n-22)*(5*n-21)*(5*n-24)*(5*n-23)*a(n-4) -a(n-5) = 0. - R. J. Mathar, Jan 28 2020
MATHEMATICA
Rest[With[{nn=20}, CoefficientList[Series[Exp[1-(1-5x)^(1/5)]-1, {x, 0, nn}], x] Range[0, nn]!]] (* Harvey P. Dale, Aug 02 2016 *)
PROG
(Magma) R<x>:=PowerSeriesRing(Rationals(), 30); Coefficients(R!(Laplace( Exp(1-(1-5*x)^(1/5)) - 1 ))); // G. C. Greubel, Oct 02 2023
(SageMath)
def A028575_list(prec):
P.<x> = PowerSeriesRing(QQ, prec)
return P( exp(1-(1-5*x)^(1/5)) -1 ).egf_to_ogf().list()
a=A028575_list(40); a[1:] # G. C. Greubel, Oct 02 2023
CROSSREFS
Sequences with e.g.f. exp(1-(1-m*x)^(1/m)) - 1: A000012 (m=1), A001515 (m=2), A015735 (m=3), A016036 (m=4), this sequence (m=5), A028844 (m=6).
Cf. A011801.
Sequence in context: A052142 A136729 A102773 * A368438 A006554 A052750
KEYWORD
nonn,easy
STATUS
approved