OFFSET
1,2
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 1..200
Wolfdieter Lang, On generalizations of Stirling number triangles, J. Integer Seqs., Vol. 3 (2000), #00.2.4.
FORMULA
E.g.f.: exp(1 - (1-5*x)^(1/5)) - 1.
a(n) = D^n(exp(x)) evaluated at x = 0, where D is the operator 1/(1-x)^4*d/dx. Cf. A001515, A015735 and A016036. - Peter Bala, Nov 25 2011
D-finite with recurrence: a(n) -20*(n-3)*a(n-1) +30*(5*n^2-35*n +62)*a(n-2) -100*(n-4)*(5*n^2-40*n+81)*a(n-3) +(5*n-22)*(5*n-21)*(5*n-24)*(5*n-23)*a(n-4) -a(n-5) = 0. - R. J. Mathar, Jan 28 2020
MATHEMATICA
Rest[With[{nn=20}, CoefficientList[Series[Exp[1-(1-5x)^(1/5)]-1, {x, 0, nn}], x] Range[0, nn]!]] (* Harvey P. Dale, Aug 02 2016 *)
PROG
(Magma) R<x>:=PowerSeriesRing(Rationals(), 30); Coefficients(R!(Laplace( Exp(1-(1-5*x)^(1/5)) - 1 ))); // G. C. Greubel, Oct 02 2023
(SageMath)
def A028575_list(prec):
P.<x> = PowerSeriesRing(QQ, prec)
return P( exp(1-(1-5*x)^(1/5)) -1 ).egf_to_ogf().list()
a=A028575_list(40); a[1:] # G. C. Greubel, Oct 02 2023
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
STATUS
approved