OFFSET
1,4
COMMENTS
a(n) is the number of allowable transition rules for passing from one change to the next (on n-1 bells) in the English art of bell-ringing. This is also the number of involutions in the symmetric group S_{n-1} which can be represented as a product of transpositions of consecutive numbers from {1, 2, ..., n-1}. Thus for n = 6 we have a(6) from (12), (12)(34), (12)(45), (23), (23)(45), (34), (45), for instance. See my 1983 Math. Proc. Camb. Phil. Soc. paper. - Arthur T. White, letter to N. J. A. Sloane, Dec 18 1986
Number of permutations p of {1, 2, ..., n-1} such that max|p(i) - i| = 1. Example: a(4) = 2 since only the permutations 132 and 213 of {1, 2, 3} satisfy the given condition. - Emeric Deutsch, Jun 04 2003 [For a(5) = 4 we have 2143, 1324, 2134 and 1243. - Jon Perry, Sep 14 2013]
Number of 001-avoiding binary words of length n-3. a(n) is the number of partitions of {1, ..., n-1} into two blocks in which only 1- or 2-strings of consecutive integers can appear in a block and there is at least one 2-string. E.g., a(6) = 7 because the enumerated partitions of {1, 2, 3, 4, 5} are 124/35, 134/25, 14/235, 13/245, 1245/3, 145/23, 125/34. - Augustine O. Munagi, Apr 11 2005
Numbers for which only one Fibonacci bit-representation is possible and for which the maximal and minimal Fibonacci bit-representations (A104326 and A014417) are equal. For example, a(12) = 10101 because 8 + 3 + 1 = 12. - Casey Mongoven, Mar 19 2006
Beginning with a(2), the "Recamán transform" (see A005132) of the Fibonacci numbers (A000045). - Nick Hobson, Mar 01 2007
Starting with nonzero terms, a(n) gives the row sums of triangle A158950. - Gary W. Adamson, Mar 31 2009
a(n+2) is the minimum number of elements in an AVL tree of height n. - Lennert Buytenhek (buytenh(AT)wantstofly.org), May 31 2010
a(n) is the number of branch nodes in the Fibonacci tree of order n-1. A Fibonacci tree of order n (n >= 2) is a complete binary tree whose left subtree is the Fibonacci tree of order n-1 and whose right subtree is the Fibonacci tree of order n-2; each of the Fibonacci trees of order 0 and 1 is defined as a single node (see the Knuth reference, p. 417). - Emeric Deutsch, Jun 14 2010
a(n+3) is the number of distinct three-strand positive braids of length n (cf. Burckel). - Maxime Bourrigan, Apr 04 2011
a(n+1) is the number of compositions of n with maximal part 2. - Joerg Arndt, May 21 2013
a(n+2) is the number of leafs of great-grandparent DAG (directed acyclic graph) of height n. A great-grandparent DAG of height n is a single node for n = 1; for n > 1 each leaf of ggpDAG(n-1) has two child nodes where pairs of adjacent new nodes are merged into single node if and only if they have disjoint grandparents and same great-grandparent. Consequence: a(n) = 2*a(n-1) - a(n-3). - Hermann Stamm-Wilbrandt, Jul 06 2014
2 and 7 are the only prime numbers in this sequence. - Emmanuel Vantieghem, Oct 01 2014
From Russell Jay Hendel, Mar 15 2015: (Start)
We can establish Gerald McGarvey's conjecture mentioned in the Formula section, however we require n > 4. We need the following 4 prerequisites.
(1) a(n) = F(n) - 1, with {F(n)}_{n >= 1} the Fibonacci numbers A000045. (2) (Binet form) F(n) = (d^n - e^n)/sqrt(5) with d = phi and e = 1 - phi, de = -1 and d + e = 1. It follows that a(n) = (d(n) - e(n))/sqrt(5) - 1. (3) To prove floor(x) = y is equivalent to proving that x - y lies in the half-open interval [0, 1). (4) The series {s(n) = c1 x^n + c2}_{n >= 1}, with -1 < x < 0, and c1 and c2 positive constants, converges by oscillation with s(1) < s(3) < s(5) < ... < s(6) < s(4) < s(2). If follows that for any odd n, the open interval (s(n), s(n+1)) contains the subsequence {s(t)}_{t >= n + 2}. Using these prerequisites we can analyze the conjecture.
Using prerequisites (2) and (3) we see we must prove, for all n > 4, that d((d^(n-1) - e^(n-1))/sqrt(5) - 1) - (d^n - e^n)/sqrt(5) + 1 + c lies in the interval [0, 1). But de = -1, implying de^(n-1) = -e^(n-2). It follows that we must equivalently prove (for all n > 4) that E(n, c) = (e^(n-2) + e^n)/sqrt(5) + 1 - d + c = e^(n-2) (e^2 + 1)/sqrt(5) + e + c lies in [0, 1). Clearly, for any particular n, E(n, c) has extrema (maxima, minima) when c = 2*(1-d) and c = (1+d)*(1-d). Therefore, the proof is completed by using prerequisite (4). It suffices to verify E(5, 2*(1-d)) = 0, E(6, 2*(1-d)) = 0.236068, E(5, (1-d)*(1+d)) = 0.618034, E(6, (1-d)*(1+d)) = 0.854102, all lie in [0, 1).
(End)
a(n) can be shown to be the number of distinct nonempty matchings on a path with n vertices. (A matching is a collection of disjoint edges.) - Andrew Penland, Feb 14 2017
Also, for n > 3, the lexicographically earliest sequence of positive integers such that {phi*a(n)} is located strictly between {phi*a(n-1)} and {phi*a(n-2)}. - Ivan Neretin, Mar 23 2017
From Eric M. Schmidt, Jul 17 2017: (Start)
Number of sequences (e(1), ..., e(n-2)), 0 <= e(i) < i, such that there is no triple i < j < k with e(i) != e(j) <= e(k). [Martinez and Savage, 2.5]
Number of sequences (e(1), ..., e(n-2)), 0 <= e(i) < i, such that there is no triple i < j < k with e(i) >= e(j) <= e(k) and e(i) != e(k). [Martinez and Savage, 2.5]
(End)
Numbers whose Zeckendorf (A014417) and dual Zeckendorf (A104326) representations are the same: alternating digits of 1 and 0. - Amiram Eldar, Nov 01 2019
a(n+2) is the length of the longest array whose local maximum element can be found in at most n reveals. See link to the puzzle by Alexander S. Kulikov. - Dmitry Kamenetsky, Aug 08 2020
a(n+2) is the number of nonempty subsets of {1,2,...,n} that contain no consecutive elements. For example, the a(6)=7 subsets of {1,2,3,4} are {1}, {2}, {3}, {4}, {1,3}, {1,4} and {2,4}. - Muge Olucoglu, Mar 21 2021
a(n+3) is the number of allowed patterns of length n in the even shift (that is, a(n+3) is the number of binary words of length n in which there are an even number of 0s between any two occurrences of 1). For example, a(7)=12 and the 12 allowed patterns of length 4 in the even shift are 0000, 0001, 0010, 0011, 0100, 0110, 0111, 1000, 1001, 1100, 1110, 1111. - Zoran Sunic, Apr 06 2022
Conjecture: for k a positive odd integer, the sequence {a(k^n): n >= 1} is a strong divisibility sequence; that is, for n, m >= 1, gcd(a(k^n), a(k^m)) = a(k^gcd(n,m)). - Peter Bala, Dec 05 2022
In general, the sum of a second-order linear recurrence having signature (c,d) will be a third-order recurrence having a signature (c+1,d-c,-d). - Gary Detlefs, Jan 05 2023
REFERENCES
A. T. Benjamin and J. J. Quinn, Proofs that really count: the art of combinatorial proof, M.A.A. 2003, id. 1.
GCHQ, The GCHQ Puzzle Book, Penguin, 2016. See page 28.
M. Kauers and P. Paule, The Concrete Tetrahedron, Springer 2011, p. 64.
D. E. Knuth, The Art of Computer Programming, Vol. 3, 2nd edition, Addison-Wesley, Reading, MA, 1998, p. 417.
J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 155.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
J. L. Yucas, Counting special sets of binary Lyndon words, Ars Combin., 31 (1991), 21-29.
LINKS
Christian G. Bower, Table of n, a(n) for n = 1..500
Isha Agarwal, Matvey Borodin, Aidan Duncan, Kaylee Ji, Tanya Khovanova, Shane Lee, Boyan Litchev, Anshul Rastogi, Garima Rastogi, and Andrew Zhao, From Unequal Chance to a Coin Game Dance: Variants of Penney's Game, arXiv:2006.13002 [math.HO], 2020.
Ricardo Gómez Aíza, Symbolic dynamical scales: modes, orbitals, and transversals, arXiv:2009.02669 [math.DS], 2020.
Kassie Archer and Aaron Geary, Powers of permutations that avoid chains of patterns, arXiv:2312.14351 [math.CO], 2023. See p. 15.
Mohammad K. Azarian, The Generating Function for the Fibonacci Sequence, Missouri Journal of Mathematical Sciences, Vol. 2, No. 2, Spring 1990, pp. 78-79. Zentralblatt MATH, Zbl 1097.11516.
Mohammad K. Azarian, A Generalization of the Climbing Stairs Problem II, Missouri Journal of Mathematical Sciences, Vol. 16, No. 1, Winter 2004, pp. 12-17.
J.-L. Baril and J.-M. Pallo, Motzkin subposet and Motzkin geodesics in Tamari lattices, 2013.
Andrew M. Baxter and Lara K. Pudwell, Ascent sequences avoiding pairs of patterns, 2014.
Serge Burckel, Syntactical methods for braids of three strands, J. Symbolic Comput. 31 (2001), no. 5, 557-564.
Alexander Burstein and Toufik Mansour, Counting occurrences of some subword patterns, arXiv:math/0204320 [math.CO], 2002-2003.
Peter J. Cameron, Sequences realized by oligomorphic permutation groups, J. Integ. Seqs. Vol. 3 (2000), #00.1.5.
Fan Chung and R. L. Graham, Primitive juggling sequences, Am. Math. Monthly 115 (3) (2008) 185-194.
Ligia Loretta Cristea, Ivica Martinjak, and Igor Urbiha, Hyperfibonacci Sequences and Polytopic Numbers, arXiv:1606.06228 [math.CO], 2016.
Michael Dairyko, Samantha Tyner, Lara Pudwell, and Casey Wynn, Non-contiguous pattern avoidance in binary trees. Electron. J. Combin. 19 (2012), no. 3, Paper 22, 21 pp. MR2967227. - From N. J. A. Sloane, Feb 01 2013
Emeric Deutsch, Problem Q915, Math. Magazine, vol. 74, No. 5, 2001, p. 404.
Christian Ennis, William Holland, Omer Mujawar, Aadit Narayanan, Frank Neubrander, Marie Neubrander, and Christina Simino, Words in Random Binary Sequences I, arXiv:2107.01029 [math.GM], 2021.
Fumio Hazama, Spectra of graphs attached to the space of melodies, Discrete Math., 311 (2011), 2368-2383. See Table 2.1.
Yasuichi Horibe, An entropy view of Fibonacci trees, Fibonacci Quarterly, 20, No. 2, 1982, 168-178. [From Emeric Deutsch, Jun 14 2010]
INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 384
Dov Jarden, Recurring Sequences, Riveon Lematematika, Jerusalem, 1966. [Annotated scanned copy] See p. 96.
Scott O. Jones and P. Mark Kayll, Constructing Edge-labellings of K_n, with Constant-length Hamilton Cycles, J. Comb. Math. Comb. Comp. (2006) Vol. 57, pp. 83-95. See p. 92.
Tamara Kogan, L. Sapir, A. Sapir, and A. Sapir, The Fibonacci family of iterative processes for solving nonlinear equations, Applied Numerical Mathematics 110 (2016) 148-158.
Alexander S. Kulikov, Find Local Maximum in an Integer Sequence, Puzzling Stack Exchange, 2020.
René Lagrange, Quelques résultats dans la métrique des permutations, Annales Scientifiques de l'Ecole Normale Supérieure, Paris, 79 (1962), 199-241.
D. A. Lind, On a class of nonlinear binomial sums, Fib. Quart., 3 (1965), 292-298.
Rui Liu and Feng-Zhen Zhao, On the Sums of Reciprocal Hyperfibonacci Numbers and Hyperlucas Numbers, Journal of Integer Sequences, Vol. 15 (2012), #12.4.5. - From N. J. A. Sloane, Oct 05 2012
Megan A. Martinez and Carla D. Savage, Patterns in Inversion Sequences II: Inversion Sequences Avoiding Triples of Relations, arXiv:1609.08106 [math.CO], 2016.
Augustine O. Munagi, Set Partitions with Successions and Separations,IJMMS 2005:3 (2005), 451-463.
Sam Northshield, Stern's Diatomic Sequence 0,1,1,2,1,3,2,3,1,4,..., Amer. Math. Month., Vol. 117 (7), pp. 581-598, 2010.
Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
Lara Pudwell, Pattern avoidance in trees, (slides from a talk, mentions many sequences), 2012.
Lara Pudwell, Pattern-avoiding ascent sequences, Slides from a talk, 2015.
Stacey Wagner, Enumerating Alternating Permutations with One Alternating Descent, DePaul Discoveries: Vol. 2: Iss. 1, Article 2.
Hsin-Po Wang and Chi-Wei Chin, On Counting Subsequences and Higher-Order Fibonacci Numbers, arXiv:2405.17499 [cs.IT], 2024. See p. 2.
Arthur T. White, Ringing the changes, Math. Proc. Cambridge Philos. Soc. 94 (1983), no. 2, 203-215.
Peijun Xu, Growth of positive braids semigroups, Journal of Pure and Applied Algebra, 1992.
J. L. Yucas, Counting special sets of binary Lyndon words, Ars Combin., 31 (1991), 21-29. (Annotated scanned copy)
Jianqiang Zhao, Uniform Approach to Double Shuffle and Duality Relations of Various q-Analogs of Multiple Zeta Values via Rota-Baxter Algebras, arXiv preprint arXiv:1412.8044 [math.NT], 2014. See Table 9, line 1.
Li-Na Zheng, Rui Liu, and Feng-Zhen Zhao, On the Log-Concavity of the Hyperfibonacci Numbers and the Hyperlucas Numbers, Journal of Integer Sequences, Vol. 17 (2014), #14.1.4.
Index entries for linear recurrences with constant coefficients, signature (2,0,-1).
FORMULA
a(n) = A000045(n) - 1.
a(0) = -1, a(1) = 0; thereafter a(n) = a(n-1) + a(n-2) + 1.
a(n) = A101220(1, 1, n-2), for n > 1.
G.f.: x^3/((1-x-x^2)*(1-x)). - Simon Plouffe in his 1992 dissertation, dropping initial 0's
a(n) = 2*a(n-1) - a(n-3). - R. H. Hardin, Apr 02 2011
Partial sums of Fibonacci numbers. - Wolfdieter Lang
a(n) = -1 + (A*B^n + C*D^n)/10, with A, C = 5 +- 3*sqrt(5), B, D = (1 +- sqrt(5))/2. - Ralf Stephan, Mar 02 2003
a(1) = 0, a(2) = 0, a(3) = 1, then a(n) = ceiling(phi*a(n-1)) where phi is the golden ratio (1 + sqrt(5))/2. - Benoit Cloitre, May 06 2003
Conjecture: for all c such that 2*(2 - Phi) <= c < (2 + Phi)*(2 - Phi) we have a(n) = floor(Phi*a(n-1) + c) for n > 4. - Gerald McGarvey, Jul 22 2004. This is true provided n > 3 is changed to n > 4, see proof in Comments section. - Russell Jay Hendel, Mar 15 2015
a(n) = Sum_{k = 0..floor((n-2)/2)} binomial(n-k-2, k+1). - Paul Barry, Sep 23 2004
a(n+3) = Sum_{k = 0..floor(n/3)} binomial(n-2*k, k)*(-1)^k*2^(n-3*k). - Paul Barry, Oct 20 2004
a(n+1) = Sum(binomial(n-r, r)), r = 1, 2, ... which is the case t = 2 and k = 2 in the general case of t-strings and k blocks: a(n+1, k, t) = Sum(binomial(n-r*(t-1), r)*S2(n-r*(t-1)-1, k-1)), r = 1, 2, ... - Augustine O. Munagi, Apr 11 2005
a(n) = Sum_{k = 0..n-2} k*Fibonacci(n - k - 3). - Ross La Haye, May 31 2006
a(n) = term (3, 2) in the 3 X 3 matrix [1, 1, 0; 1, 0, 0; 1, 0, 1]^(n-1). - Alois P. Heinz, Jul 24 2008
For n >= 4, a(n) = ceiling(phi*a(n-1)), where phi is the golden ratio. - Vladimir Shevelev, Jul 04 2010
Closed-form without two leading zeros g.f.: 1/(1 - 2*x - x^3); ((5 + 2*sqrt(5))*((1 + sqrt(5))/2)^n + (5 - 2*sqrt(5))*((1 - sqrt(5))/2)^n - 5)/5; closed-form with two leading 0's g.f.: x^2/(1 - 2*x - x^3); ((5 + sqrt(5))*((1 + sqrt(5))/2)^n + (5 - sqrt(5))*((1 - sqrt(5))/2)^n - 10)/10. - Tim Monahan, Jul 10 2011
A000119(a(n)) = 1. - Reinhard Zumkeller, Dec 28 2012
a(n) = A228074(n - 1, 2) for n > 2. - Reinhard Zumkeller, Aug 15 2013
G.f.: Q(0)*x^2/2, where Q(k) = 1 + 1/(1 - x*(4*k + 2 - x^2)/( x*(4*k + 4 - x^2) + 1/Q(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Aug 30 2013
A083368(a(n+3)) = n. - Reinhard Zumkeller, Aug 10 2014
E.g.f.: 1 - exp(x) + 2*exp(x/2)*sinh(sqrt(5)*x/2)/sqrt(5). - Ilya Gutkovskiy, Jun 15 2016
a(n) = Sum_{i=0..n-2} Fibonacci(i). - Giorgi Dalakishvili (mcnamara_gio(AT)yahoo.com), Apr 02 2005 [corrected by Doug Bell, Jun 01 2017]
a(n+2) = Sum_{j = 0..floor(n/2)} Sum_{k = 0..j} binomial(n - 2*j, k+1)*binomial(j, k). - Tony Foster III, Sep 08 2017
From Peter Bala, Nov 12 2021: (Start)
a(4*n) = Fibonacci(2*n+1)*Lucas(2*n-1) = A081006(n);
a(4*n+1) = Fibonacci(2*n)*Lucas(2*n+1) = A081007(n);
a(4*n+2) = Fibonacci(2*n)*Lucas(2*n+2) = A081008(n);
a(4*n+3) = Fibonacci(2*n+2)*Lucas(2*n+1) = A081009(n). (End)
G.f.: x^3/((1 - x - x^2)*(1 - x)) = Sum_{n >= 0} (-1)^n * x^(n+3) *( Product_{k = 1..n} (k - x)/Product_{k = 1..n+2} (1 - k*x) ) (a telescoping series). - Peter Bala, May 08 2024
MAPLE
A000071 := proc(n) combinat[fibonacci](n)-1 ; end proc; # R. J. Mathar, Apr 07 2011
a:= n-> (Matrix([[1, 1, 0], [1, 0, 0], [1, 0, 1]])^(n-1))[3, 2]; seq(a(n), n=1..50); # Alois P. Heinz, Jul 24 2008
MATHEMATICA
Fibonacci[Range[40]] - 1 (* or *) LinearRecurrence[{2, 0, -1}, {0, 0, 1}, 40] (* Harvey P. Dale, Aug 23 2013 *)
Join[{0}, Accumulate[Fibonacci[Range[0, 39]]]] (* Alonso del Arte, Oct 22 2017, based on Giorgi Dalakishvili's formula *)
PROG
(PARI) {a(n) = if( n<1, 0, fibonacci(n)-1)};
(Magma) [Fibonacci(n)-1: n in [1..60]]; // Vincenzo Librandi, Apr 04 2011
(Haskell)
a000071 n = a000071_list !! n
a000071_list = map (subtract 1) $ tail a000045_list
-- Reinhard Zumkeller, May 23 2013
(SageMath) [fibonacci(n)-1 for n in range(1, 60)] # G. C. Greubel, Oct 21 2024
KEYWORD
AUTHOR
EXTENSIONS
Edited by N. J. A. Sloane, Apr 04 2011
STATUS
approved