login
A053606
a(n) = (Fibonacci(6*n+3) - 2)/4.
15
0, 8, 152, 2736, 49104, 881144, 15811496, 283725792, 5091252768, 91358824040, 1639367579960, 29417257615248, 527871269494512, 9472265593285976, 169972909409653064, 3050040103780469184, 54730748958638792256, 982103441151717791432
OFFSET
0,2
COMMENTS
Define a(1)=0, a(2)=8 with 5*(a(1)^2) + 5*a(1) + 1 = j(1)^2 = 1^2 and 5*(a(2)^2) + 5*a(2) + 1 = j(2)^2 = 19^2. Then a(n) = a(n-2) + 8*sqrt(5*(a(n-1)^2) + 5*a(n-1)+1). Another definition: a(n) such that 5*(a(n)^2) + 5*a(n) + 1 = j(n)^2. - Pierre CAMI, Mar 30 2005
It appears this sequence gives all nonnegative m such that 5*m^2 + 5*m + 1 is a square. - Gerald McGarvey, Apr 03 2005
sqrt(5*a(n)^2+5*a(n)+1) = A049629(n). - Gerald McGarvey, Apr 19 2005
a(n) is such that 5*a(n)^2 + 5*a(n) + 1 = j^2 = the square of A049629(n). Also A049629(n)/a(n) tends to sqrt(5) as n increases. - Pierre CAMI, Apr 21 2005
From Russell Jay Hendel, Apr 25 2015: (Start)
We prove the two McGarvey-CAMI conjectures mentioned at the beginning of the Comments section. Let, as usual, F(n)= A000045(n), the Fibonacci numbers. In the sequel we indicate equations with upper case letters ((A), (B), (C), (D)) for ease of reference.
Then we must prove (A), 5*((F(6n+3) -2)/4)^2 + 5 *((F(6n+3) -2)/4) +1 = ((F(6n+5)-F(6n+1)/4)^2. Let m=3n+1 so that 6n+1, 6n+3, and 6n+5 are 2m-1, 2m+1, and 2m+3 respectively. Define G(m)= F(6n+3)=F(2m+1) = A001519(m+1), the bisected Fibonacci numbers. We can now simplify equation (A) by i) multiplying the LHS and RHS by 16, ii) expanding squares, and iii) gathering like terms. This shows proof of (A) equivalent to proving (B), 5G(m)^2-4 = (G(m+1)-G(m-1))^2.
By Jarden's theorem (D. Jarden, Recurring sequences, 2nd ed. Jerusalem, Riveon Lematematika, (1966)), if {H(n)}_{n >=1} is any recursive sequence satisfying (C), H(n)=3H(n-1)-H(n-2), then {H(n)}^2_{n >=1} is also a recursive sequence satisfying (D), H(n)^2=8H(n-1)^2-8H(n-2)^2+H(n-3)^2. As noted in the Formula section of A001519, {G(m)}_{m >= 1} satisfies (C).
Proof of (B) is now straightforward. Since {G(m)}_{m >=1} satisfies (C), it follows that {G(m)^2}_{m >=1} satisfies (D), and therefore, {5G(m)^2-4}_{m >=1} also satisfies (D).
Similarly, since {G(m)}_{m >=1} satisfies (C), it follows that both {G(m+1)}_{m >=1}, {G(m-1)}_{m >=1} and their difference {G(m+1)-G(m-1)}_{m >=1} satisfy (C), and therefore {G(m+1)-G(m-1)}^2_{m >=1} satisfies (D).
But then the LHS and RHS of (B) are equal for m=1,2,3 and satisfy the same recursion, (D). Hence the LHS and RHS of (B) are equal for all m. This completes the proof. (End)
FORMULA
a(n) = 8*A049664(n).
a(n+1) = 9*a(n) + 2*sqrt(5*(2*a(n)+1)^2-1) + 4. - Richard Choulet, Aug 30 2007
G.f.: 8*x/((1-x)*(1-18*x+x^2)). - Richard Choulet, Oct 09 2007
a(n) = 18*a(n-1) - a(n-2) + 8, n > 1. - Gary Detlefs, Dec 07 2010
a(n) = Sum_{k=0..n} A134492(k). - Gary Detlefs, Dec 07 2010
a(n) = (Fibonacci(6*n+6) - Fibonacci(6*n) - 8)/16. - Gary Detlefs, Dec 08 2010
MAPLE
A053606 := proc(n) add(combinat[fibonacci](6*k), k=0..n) ; end proc:
seq(A053606(n), n=0..30) ;
MATHEMATICA
Table[(Fibonacci[6n+3] -2)/4, {n, 0, 30}] (* Vladimir Joseph Stephan Orlovsky, Jul 01 2011 *)
PROG
(Magma) [(Fibonacci(6*n+3)-2)/4: n in [0..30]]; // Vincenzo Librandi, Apr 20 2011
(PARI) a(n)=fibonacci(6*n+3)\4 \\ Charles R Greathouse IV, Jul 02 2013
(Sage) [(fibonacci(6*n+3)-2)/4 for n in (0..30)] # G. C. Greubel, May 16 2019
(GAP) List([0..30], n-> (Fibonacci(6*n+3)-2)/4) # G. C. Greubel, May 16 2019
CROSSREFS
Cf. A049629.
Related to sum of Fibonacci(kn) over n.. A000071, A027941, A099919, A058038, A138134.
Sequence in context: A229955 A249481 A003491 * A367701 A221732 A249931
KEYWORD
nonn,easy
AUTHOR
STATUS
approved