login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A128697
Sum of the eighth powers of the first n Fibonacci numbers.
9
0, 1, 2, 258, 6819, 397444, 17174660, 832905381, 38655764742, 1824449669638, 85558387560263, 4022147193262344, 188906406088298760, 8875457294194960201, 416941824416535235082, 19587673124144635235082, 920198619736386114829803, 43229838526402491973562764, 2030880577900713476799525260, 95408186647695095521364177901, 4482153365649947417785489568526
OFFSET
0,3
COMMENTS
Natural bilateral extension (brackets mark index 0): ..., -17174660, -397444, -6819, -258, -2, -1, 0, [0], 1, 2, 258, 6819, 397444, 17174660, ... This is (-A128697)-reversed followed by A128697.
LINKS
Index entries for linear recurrences with constant coefficients, signature (35,680,-5355,-7735,24752,-7735,-5355,680,35,-1).
FORMULA
Let F(n) be the Fibonacci number A000045(n).
a(n) = Sum_{k=1..n} F(k)^8.
Closed form: a(n) = F(8n+4)/1875 - (-1)^n 4 F(6n+3)/625 + 28 F(4n+2)/625 - (-1)^n 56 F(2n+1)/625 + 7(2 n + 1)/125.
Recurrence: a(n) - 35 a(n-1) - 680 a(n-2) + 5355 a(n-3) + 7735 a(n-4) - 24752 a(n-5) + 7735 a(n-6) + 5355 a(n-7) - 680 a(n-8) - 35 a(n-9) + a(n-10) = 0.
G.f.: A(x) = (x - 33 x^2 - 492 x^3 + 1784 x^4 + 1784 x^5 - 492 x^6 - 33 x^7 + x^8)/(1 - 35 x - 680 x^2 + 5355 x^3 + 7735 x^4 - 24752 x^5 + 7735 x^6 + 5355 x^7 - 680 x^8 - 35 x^9 + x^10) = x*(1 + x)*(1 - 34 x - 458 x^2 + 2242 x^3 - 458 x^4 - 34 x^5 + x^6)/((1 - x)^2*(1 + 3 x + x^2)*(1 - 7 x + x^2)*(1 + 18 x + x^2)*(1 - 47 x + x^2)).
MATHEMATICA
a[ n_Integer ] := If[ n >= 0, Sum[ Fibonacci[ k ]^8, {k, 1, n} ], Sum[ -Fibonacci[ -k ]^8, {k, 1, -n - 1} ] ]
Accumulate[Fibonacci[Range[0, 20]]^8] (* Harvey P. Dale, Oct 26 2011 *)
PROG
(PARI) a(n) = sum(k=1, n, fibonacci(k)^8); \\ Michel Marcus, Dec 10 2016
(Magma) [(&+[Fibonacci(k)^8: k in [0..n]]): n in [0..30]]; // G. C. Greubel, Jan 17 2018
CROSSREFS
Cf. A128698 (alternating sum).
Sums of other powers: A000071, A001654, A005968, A005969, A098531, A098532, A098533.
Sequence in context: A258805 A327777 A196288 * A182422 A218435 A089663
KEYWORD
nonn,easy
AUTHOR
Stuart Clary, Mar 23 2007
STATUS
approved