login
A004070
Table of Whitney numbers W(n,k) read by antidiagonals, where W(n,k) is maximal number of pieces into which n-space is sliced by k hyperplanes, n >= 0, k >= 0.
26
1, 1, 1, 1, 2, 1, 1, 2, 3, 1, 1, 2, 4, 4, 1, 1, 2, 4, 7, 5, 1, 1, 2, 4, 8, 11, 6, 1, 1, 2, 4, 8, 15, 16, 7, 1, 1, 2, 4, 8, 16, 26, 22, 8, 1, 1, 2, 4, 8, 16, 31, 42, 29, 9, 1, 1, 2, 4, 8, 16, 32, 57, 64, 37, 10, 1, 1, 2, 4, 8, 16, 32, 63, 99, 93, 46, 11, 1, 1, 2, 4, 8, 16, 32, 64, 120, 163
OFFSET
0,5
COMMENTS
As a number triangle, this is given by T(n,k)=sum{j=0..n, C(n,j)(-1)^(n-j)sum{i=0..j, C(j+k,i-k)}}. - Paul Barry, Aug 23 2004
As a number triangle, this is the Riordan array (1/(1-x), x(1+x)) with T(n,k)=sum{i=0..n, binomial(k,i-k)}. Diagonal sums are then A023434(n+1). - Paul Barry, Feb 16 2005
Form partial sums across rows of square array of binomial coefficients A026729; see also A008949. - Philippe Deléham, Aug 28 2005
Square array A026729 -> Partial sums across rows
1 0 0 0 0 0 0 . . . . 1 1 1 1 1 1 1 . . . . . .
1 1 0 0 0 0 0 . . . . 1 2 2 2 2 2 2 . . . . . .
1 2 1 0 0 0 0 . . . . 1 3 4 4 4 4 4 . . . . . .
1 3 3 1 0 0 0 . . . . 1 4 7 8 8 8 8 . . . . . .
For other Whitney numbers see A007799.
W(n,k) is the number of length k binary sequences containing no more than n 1's. - Geoffrey Critzer, Mar 15 2010
From Emeric Deutsch, Jun 15 2010: (Start)
Viewed as a number triangle, T(n,k) is the number of internal nodes of the Fibonacci tree of order n+2 at level k. A Fibonacci tree of order n (n>=2) is a complete binary tree whose left subtree is the Fibonacci tree of order n-1 and whose right subtree is the Fibonacci tree of order n-2; each of the Fibonacci trees of order 0 and 1 is defined as a single node.
(End)
Named after the American mathematician Hassler Whitney (1907-1989). - Amiram Eldar, Jun 13 2021
REFERENCES
Donald E. Knuth, The Art of Computer Programming, Vol. 3, 2nd edition, Addison-Wesley, Reading, MA, 1998, p. 417. [Emeric Deutsch, Jun 15 2010]
LINKS
Gustav Burosch, Hans-Dietrich O.F. Gronau, Jean-Marie Laborde and Ingo Warnke, On posets of m-ary words, Discrete Math., Vol. 152, No. 1-3 (1996), pp. 69-91. MR1388633 (97e:06002)
Matteo Cervetti and Luca Ferrari, Pattern avoidance in the matching pattern poset, arXiv:2009.01024 [math.CO], 2020.
Yasuichi Horibe, An entropy view of Fibonacci trees, Fibonacci Quarterly, Vol. 20, No. 2 (1982), pp. 168-178. [From Emeric Deutsch, Jun 15 2010]
FORMULA
W(n, k) = Sum_{i=0..n} binomial(k, i). - Bill Gosper
W(n, k) = if k=0 or n=0 then 1 else W(n, k-1)+W(n-1, k-1). - David Broadhurst, Jan 05 2000
The table W(n,k) = A000012 * A007318(transform), where A000012 = (1; 1,1; 1,1,1; ...). - Gary W. Adamson, Nov 15 2007
E.g.f. for row n: (1 + x + x^2/2! + ... + x^n/n!)* exp(x). - Geoffrey Critzer, Mar 15 2010
G.f.: 1 / (1 - x - x*y*(1 - x^2)) = Sum_{0 <= k <= n} x^n * y^k * T(n, k). - Michael Somos, May 31 2016
W(n, n) = 2^n. - Michael Somos, May 31 2016
From Jianing Song, May 30 2022: (Start)
T(n, 0) = T(n, n) = 1 for n >= 0; T(n, k) = T(n-1, k-1) + T(n-2, k-1) for k=1, 2, ..., n-1, n >= 2.
T(n, k) = Sum_{m=0..n-k} binomial(k, m).
T(n,k) = 2^k for 0 <= k <= floor(n/2). (End)
EXAMPLE
Table W(n,k) begins:
1 1 1 1 1 1 1 ...
1 2 3 4 5 6 7 ...
1 2 4 7 11 16 22 ...
1 2 4 8 15 26 42 ... - Michael Somos, Apr 28 2000
W(2,4) = 11 because there are 11 length 4 binary sequences containing no more than 2 1's: {0, 0, 0, 0}, {0, 0, 0, 1}, {0, 0, 1, 0}, {0, 0, 1, 1}, {0, 1, 0, 0}, {0, 1, 0, 1}, {0, 1, 1, 0}, {1, 0, 0, 0}, {1, 0, 0, 1}, {1, 0, 1, 0}, {1, 1, 0, 0}. - Geoffrey Critzer, Mar 15 2010
Table T(n, k) begins:
1
1 1
1 2 1
1 2 3 1
1 2 4 4 1
1 2 4 7 5 1
1 2 4 8 11 6 1
... - Michael Somos, May 31 2016
MATHEMATICA
Transpose[ Table[Table[Sum[Binomial[n, k], {k, 0, m}], {m, 0, 15}], {n, 0, 15}]] // Grid (* Geoffrey Critzer, Mar 15 2010 *)
T[ n_, k_] := Sum[ Binomial[n, j] (-1)^(n - j) Sum[ Binomial[j + k, i - k], {i, 0, j}], {j, 0, n}]; (* Michael Somos, May 31 2016 *)
PROG
(PARI) /* array read by antidiagonals up coordinate index functions */
t1(n) = binomial(floor(3/2 + sqrt(2+2*n)), 2) - (n+1); /* A025581 */
t2(n) = n - binomial(floor(1/2 + sqrt(2+2*n)), 2); /* A002262 */
/* define the sequence array function for A004070 */
W(n, k) = sum(i=0, n, binomial(k, i));
/* visual check ( origin 0, 0 ) */
printp(matrix(7, 7, n, k, W(n-1, k-1)));
/* print the sequence entries by antidiagonals going up ( origin 0, 0 ) */
print1("S A004070 "); for(n=0, 32, print1(W(t1(n), t2(n))", "));
print1("T A004070 "); for(n=33, 61, print1(W(t1(n), t2(n))", "));
print1("U A004070 "); for(n=62, 86, print1(W(t1(n), t2(n))", ")); /* Michael Somos, Apr 28 2000 */
(PARI) T(n, k)=sum(m=0, n-k, binomial(k, m)) \\ Jianing Song, May 30 2022
CROSSREFS
Cf. A007799. As a triangle, mirror A052509.
Rows converge to powers of two (A000079). Subdiagonals include A000225, A000295, A002662, A002663, A002664, A035038, A035039, A035040, A035041, A035042. Antidiagonal sums are A000071.
Cf. A178522, A178524. - Emeric Deutsch, Jun 15 2010
Sequence in context: A027751 A378180 A181322 * A180562 A199711 A048887
KEYWORD
tabl,nonn,easy,nice
EXTENSIONS
More terms from Larry Reeves (larryr(AT)acm.org), Mar 20 2000
STATUS
approved