In algebraic topology, the Betti numbers are used to distinguish topological spaces based on the connectivity of n-dimensional simplicial complexes. For the most reasonable finite-dimensional spaces (such as compact manifolds, finite simplicial complexes or CW complexes), the sequence of Betti numbers is 0 from some point onward (Betti numbers vanish above the dimension of a space), and they are a
åæã¨æ¯ã¹ãçµæããã®è¨äºã«ã¯å¤æ°ã®ï¼ã¾ãã¯å 容ã®å¤§é¨åã«å½±é¿ããï¼èª¤è¨³ããããã¨ãå¤æãã¦ãã¾ããæ å ±ã®å©ç¨ã«ã¯æ³¨æãã¦ãã ããã æ£ç¢ºãªè¡¨ç¾ã«æ¹è¨³ã§ããæ¹ãæ±ãã¦ãã¾ãã 代æ°çä½ç¸å¹¾ä½å¦ã«ããã¦ããããæ° (ããããããè±èª: Betti numbers) ã¯ãä½ç¸ç©ºéã«å¯¾ããä¸å¤éã§ãããèªç¶æ°ã«å¤ããã¤ã ãã¼ã©ã¹ã¯ã²ã¨ã¤ã®é£çµæå(b0)ãæã£ã¦ãã¦ãäºã¤ã®åç¶ã®ç©´(b1)ï¼ã²ã¨ã¤ã¯ä¸å¿ãåç¹ã¨ããåã§ãããã²ã¨ã¤ã¯ã管ç¶ã«ãªã£ã¦ããä¸ã®åç¶ã®é¨åï¼ã§ããã2-次å ã®ä¸èº«ã®ãªãé¨åãä¸ã«æã¤ï¼å é¨ã管ç¶ã¨ãªã£ã¦ããï¼ãã®ãã²ã¨ã¤(b2)ã§ããã®ã§ããããæ°ã¯ 1(b0), 2(b1), 1(b2) ã¨ãªãï¼ å³ã®å³ã®ãããªãã¼ã©ã¹ãèããããã®ãã¼ã©ã¹ã«åãå£ãåå¨ã«ãªãããã«åãè¾¼ã¿ããããã¨ãããã®çµæäºã¤ã®ãã¼ã¹ã«åãããªãåãæ¹ããç©´ã®ã¾ããã«ãã£ã¦ä¸å¨ããæ¹æ³ã¨ã縦ã«
ãã®è¨äºã¯æ¤è¨¼å¯è½ãªåèæç®ãåºå ¸ãå ¨ã示ããã¦ããªãããä¸ååã§ãã åºå ¸ã追å ãã¦è¨äºã®ä¿¡é ¼æ§åä¸ã«ãååãã ãããï¼ãã®ãã³ãã¬ã¼ãã®ä½¿ãæ¹ï¼ åºå ¸æ¤ç´¢?: "å¾®åä½ç¸å¹¾ä½å¦" â ãã¥ã¼ã¹Â · æ¸ç±Â · ã¹ã«ã©ã¼Â · CiNii · J-STAGE · NDL · dlib.jp · ã¸ã£ãã³ãµã¼ã · TWL (2011å¹´11æ) å¾®åä½ç¸å¹¾ä½å¦ï¼ã³ã¶ããããããããï¼ãããã¯å¾®åãããã¸ã¼ï¼è±èªï¼differential topologyï¼ã¯ãå¤æ§ä½ã®å¾®åå¯è½æ§é ã«æ³¨ç®ããå¹¾ä½å¦ã®ä¸åéãå¾®åå¯è½æ§é ã¨ããä½ç¸ã®ã¿ã§ã¯æ±ºã¾ããªããã®ãæ±ãããç´ç²ãªä½ç¸å¹¾ä½å¦ã¨ãã¦æ±ãã®ã¯é£ããé¨åãããããä½ç¸ãä¸ãããã¦ããå¤æ§ä½ã®å¾®åå¯è½æ§é ã¤ã¾ãå¾®ç©åãã§ãããããªæ§é ã調ã¹ãã¨ãããã¨ã§ä½ç¸å¤æ§ä½ã調ã¹ããã®ã§ãå¾®åå¯è½æ§é ã¾ã§è¾¼ããå¤æ§ä½ã«è·é¢ãæ²çãå®ãã¦ç 究ãè¡ãå¾®åå¹¾ä½å¦ã«æ¯ã¹
1. ã«ã¼ãã«æ³ã¸ã®æå¾ æ£å®å¤ã«ã¼ãã«ã«ãããã¼ã¿è§£æ ï¼ ã«ã¼ãã«æ³ã®åºç¤ã¨å±é ï¼ ç¦æ°´å¥æ¬¡ çµ±è¨æ°çç 究æï¼ç·åç 究大å¦é¢å¤§å¦ 1 çµ±è¨æ°çç 究æ å ¬éè¬åº§ 2011å¹´1æ13,14æ¥ æ¦è¦ ⢠ã«ã¼ãã«æ³ã®åºæ¬ â ç·å½¢ãã¼ã¿è§£æã¨éç·å½¢ãã¼ã¿è§£æ â ã«ã¼ãã«æ³ã®åç ⢠ã«ã¼ãã«æ³ã®ï¼ã¤ã®ä¾ â ã«ã¼ãã«ä¸»æååæ: PCAã®éç·å½¢æ¡å¼µ â ãªãã¸å帰ã¨ãã®ã«ã¼ãã«å 2 æ¦è¦ ⢠ã«ã¼ãã«æ³ã®åºæ¬ â ç·å½¢ãã¼ã¿è§£æã¨éç·å½¢ãã¼ã¿è§£æ â ã«ã¼ãã«æ³ã®åç ⢠ã«ã¼ãã«æ³ã®ï¼ã¤ã®ä¾ â ã«ã¼ãã«ä¸»æååæ: PCAã®éç·å½¢æ¡å¼µ â ãªãã¸å帰ã¨ãã®ã«ã¼ãã«å 3 ãã¼ã¿è§£æã¨ã¯? Analysis of data is a process of inspecting, cleaning, transforming, and modeling data with the go
è±èªçè¨äºãæ¥æ¬èªã¸æ©æ¢°ç¿»è¨³ãããã¼ã¸ã§ã³ï¼Google翻訳ï¼ã ä¸ãä¸ç¿»è¨³ã®æãããã¨ãã¦æ©æ¢°ç¿»è¨³ãç¨ããå ´åã翻訳è ã¯å¿ ã翻訳å åæãåç §ãã¦æ©æ¢°ç¿»è¨³ã®èª¤ããè¨æ£ããæ£ç¢ºãªç¿»è¨³ã«ããªããã°ãªãã¾ããããããæããã¦ããªãå ´åãè¨äºã¯åé¤ã®æ¹éG-3ã«åºã¥ããåé¤ãããå¯è½æ§ãããã¾ãã ä¿¡é ¼æ§ãä½ãã¾ãã¯ä½å質ãªæç« ã翻訳ããªãã§ãã ãããããå¯è½ãªãã°ãæç« ãä»è¨èªçè¨äºã«ç¤ºãããæç®ã§æ£ãããã©ããã確èªãã¦ãã ããã å±¥æ´ç¶æ¿ãè¡ããããè¦ç´æ¬ã«ç¿»è¨³å ã¨ãªã£ãè¨äºã®ãã¼ã¸åã»çã«ã¤ãã¦è¨è¿°ããå¿ è¦ãããã¾ããè¨è¿°æ¹æ³ã«ã¤ãã¦ã¯ãWikipedia:翻訳ã®ã¬ã¤ãã©ã¤ã³#è¦ç´æ¬ã¸ã®è¨å ¥ãåç §ãã ããã 翻訳å¾ã{{翻訳åç¥|en|Projection pursuit regression|â¦}}ããã¼ãã«è¿½å ãããã¨ãã§ãã¾ãã Wikipedia:翻訳ã®ã¬ã¤ãã©ã¤ã³ã«ããã詳細ãªç¿»
å¤æ§ä½å¦ç¿ç´¹ä» ä¸å·ç æ©æ¢°å¦ç¿åå¼·ä¼ 2008/6/19 åç° ç¨ï¼ä¸å·ç ï¼ â»æ°å¦çãªé¨åã¯ããå æ¸ãªã®ã§ã注æä¸ãã åèæç® â¢ âAlgorithms for manifold learningâ, Lawrence Cayton, UCSD tech report CS2008â0923 ⢠âRobust Euclidean Embeddingâ, Lawrence Cayton, Sanjoy Dasgupta, ICML 2006 âAlgorithms for manifold learningâ, L. Cayton, UCSD tech report CS2008â0923 å¤æ§ä½ã¨ã¯ï¼ï¼æè¦ç説æï¼ â¢ è¦ããã¯éãããå®è³ªçã«ã¯d次å ã¦ã¼ã¯ ãªãã空éã§è¡¨ç¾ã§ãããããªå³å½¢ ⢠ãå±æçã«å°å³ãæ¸ãããããªå³å½¢ãã¨ãè¨ã ãï¼ä¾ï¼å°ç表é¢ï¼ 3次
å¤æ§ä½ã®å®ç¾©ã§éè¦ãªç¹ã¯ãå¤æ§ä½ã®ä¸ã«ããã«ãã¦åº§æ¨ç³»ãè²¼ãä»ãããï¼ã¨ãããã¨ã¨ãã©ã®ãããªåº§æ¨ç³»ãç¨ããã¨ãã¦ãè¨ç®ã«éããç¾ããªãããã«ãããã¨ã§ãããå¤æ§ä½ã¯è¨ç®ãããã¨ãã«åº§æ¨ãå°å ¥ã§ãããããã©ã®ãããªåº§æ¨ç³»ã§è¨ç®ããã¨ãã¦ãéãããªããããªãã¡åº§æ¨ç³»ã«ä¾åããªãã¨ããé常ã«æ±ããããæ§è³ªã追æ±ãããå³å½¢ã§ããã ããã§ããè¨ç®ã¨ã¯é¢æ°ããã¯ãã«ããããã®å¾®åãç©åãªã©ã®ã¦ã¼ã¯ãªãã空éã®ä¸ã§æ®éã«è¡ããã¦ãããããªåº§æ¨ãç¨ããè¨ç®ã®ãã¨ã§ããã åç¸åå Ï ã¨ãã®éåå Ïâ1 ã§å¯¾å¿ä»ããããï¼åº§æ¨ã®ç¡ãï¼éå U ã¨ï¼åº§æ¨ã®ããï¼éå U ' M ãä½ç¸ç©ºéã¨ãããM ã®ééå U ã«å¯¾ãã¦ãm 次å ã¦ã¼ã¯ãªãã空éã®ééå U ' ã¸ã® åç¸åå ãå±æ座æ¨ç³» (local coordinate system) ãããã¯ï¼å±æï¼ãã£ã¼ã (chart) ã¨ããã a
ç» å èª è ã è¨ ç® æ© ã§ è¡ ãªãããã« Edelsbrunner 㨠Letscher 㨠Zomorodian [ ELZ02 ] ã«ãã å® ç¾© ããããã®ã§ persistent homology ã¨ å¼ ã°ãããã®ããã ã Gunnar Carlsson ãããã 㣠ã¦ãã [ ZC05 ] ããã§ãã ã ç¾å¨ ã§ã¯ å¿ ç¨ ããã㸠㼠㮠主 è¦ ãª é å · ã® ä¸ ã¤ã«ãª 㣠ã¦ãã ã 2012 å¹´ ã® Edinburgh ã§ã® å¿ ç¨ ããã³ è¨ ç® ããã㸠㼠㮠é ä¼ ã§ã¯ , 8 å² ãããã® è¬ æ¼ ã§ ä½¿ ããã¦ã ãããã« æ ã ã ãã® å¾ å å ãã å¿ ç¨ ããã㸠㼠㮠é ä¼ ã§ã , ã»ã¨ãã©ã® è¬ æ¼ ã¯ persistent homology ã« é¢ ãããã®ã 㣠ã ã ãã® ç ç± ã® ä¸ ã¤ã¯ , å® é ã«
https://detail.chiebukuro.yahoo.co.jp/qa/question_detail/q1343207768 ä½è¤èå çã®ãä½ç¸å¹¾ä½ãï¼å²©æ³¢æ¸åºï¼ã®åé ã«ã¯ããæ¸ããã¦ãã¾ãã ãä½ç¸å¹¾ä½ã¯ãã¤ãªãã£ã¦ããããé¢ãã¦ãããã¨ããæ¬è³ªçãªéãã®ã¿ãè¦ã¤ãã¦ãããããªå³å½¢ãåé¡ããã å³å½¢ã®ç©´ã®æ°ãï¼ã³ãï¼ã³ã¨æ°ããã®ã¯ä¸ã¤ã®è¡¨ç¾ã§ããããã¾ãç©´ã¨ã¯ä½ã§ãç©´ã®æ°ã¯ã©ã®ããã«æ°ãããããã®ã§ãããããå®ã¯ããããæ°å¦çã«èª¬æããã®ããã¢ããã¼ç¾¤ããã¢ãã¸ã¼ç¾¤ãã³ãã¢ãã¸ã¼ç¾¤ã§ãããããã«å³å½¢ã®æ²ããå ·åã®ç¨åº¦ã表ãã®ãç¹æ§é¡ã§ãããç´æçã«ããã°ãi次å ã®ãã¢ããã¼ç¾¤ã¯ãi次å ã®â丸ãç©´âã®æ§åãè¦ã¦ãããi次å ã®ãã¢ãã¸ã¼ç¾¤ã¯ãi次å ã®âé¨å±âã®æ°ã調ã¹ã¦ããã¨ãããã¨ãã§ããã§ããããã ä½ç¸å¹¾ä½ã®å ¥éã§ã¾ãåå¼·ããã®ã¯ãã¢ãã¸ã¼ã¨åºæ¬ç¾¤ã§ãããåºæ¬ç¾¤ã¯ãã¢ããã¼
æ°å¦ãã¨ãã«ä»£æ°çä½ç¸å¹¾ä½å¦ãæ½è±¡ä»£æ°å¦ã«ããã¦ããã¢ãã¸ã¼ï¼è±èª: homologyï¼ã¯ä¸ããããæ°å¦ç対象ãä¾ãã°ä½ç¸ç©ºéã群ã«ãã¢ã¼ãã«ç¾¤ãå 群ã®åã対å¿ãããä¸ã¤ã®ä¸è¬çãªæç¶ããããããã¢ãã¸ã¼ã®åã¯ãåä¸ã§ããããã¨ãæå³ããã®ãªã·ã£èªã®ãã¢ã¹ï¼á½Î¼ÏÏï¼ã«ç±æ¥ããããã詳ããèæ¯ã«ã¤ãã¦ã¯ ãã¢ãã¸ã¼è« ãè¦ãããããã¾ãããã¢ãã¸ã¼ã®ææ³ã®ä½ç¸ç©ºéã«å¯¾ããå ·ä½çãªé©ç¨ã«ã¤ãã¦ã¯ç¹ç°ãã¢ãã¸ã¼ãã群ã«ã¤ãã¦ã®ããã¯ç¾¤ã³ãã¢ãã¸ã¼ããããããåç §ããããã ä½ç¸ç©ºéã«å¯¾ãã¦ã¯ããã¢ãã¸ã¼ç¾¤ã¯ä¸è¬ã«ãã¢ããã¼ç¾¤ããããã£ã¨è¨ç®ããããããããã£ã¦ã空éãåé¡ããéå ·ã¨ãã¦ã¯ããæ軽ã«æ±ããã ãã¢ãã¸ã¼ç¾¤ã¯ä»¥ä¸ã®ãããªæç¶ããçµã¦ä½ãããã æ°å¦ç対象ããã¨ãã°ä½ç¸ç©ºé X ãä¸ããããã¨ããã¾ã X ã®æ å ±ãæ½åºãããã§ã¤ã³è¤ä½ C(X) ãæ§æããããã§ã¤ã³è¤ä½ã¯ã¢ã¼ãã«ç¾¤ã
æ°å¦ã«ããããã¢ããã¼ (homotopy) ã¨ã¯ãç¹ãç·ãé¢ãªã©ã®å¹¾ä½å¦ç対象ããããã¯ãããã®éã®é£ç¶ååãé£ç¶çã«ç§»ãããã¨ãããã¨ãå®å¼åããä½ç¸å¹¾ä½å¦ã«ãããæ¦å¿µã®ã²ã¨ã¤ã§ãããä½ç¸å¹¾ä½å¦ã§ã¯ã2 ã¤ã®å¯¾è±¡ A 㨠X ã¨ã®é¢ä¿ã®ãã¡ãé£ç¶çãªå¤å½¢ã«ãã£ã¦ä¿ããããã®ãåé¡ã¨ãããã¨ãå¤ãããããã®é¢ä¿ã¯ãµã¤ãé£ç¶åå A â X ãéãã¦å®ç¾©ããããã¢ããã¼ã®æ¦å¿µã¯é£ç¶çã«å¤å½¢ããé£ç¶ååã®æã«ãã£ã¦å®å¼åãããããã¢ããã¼çãªç¨®ã ã®ä¸å¤éã¯ä½ç¸å¹¾ä½å¦ã®ç 究ã«ãããåºæ¬çãªéå ·ã¨ãªãã èå¯ãã¦ããå¹¾ä½å¦ç対象ã«ãç©´ããéãã¦ããã°ã端ãåºå®ãããæ²ç·ã¯ãããè¶ãã¦é£ç¶çã«å¤å½¢ãããã¨ãã§ããªãããããã£ã¦ããã¢ããã¼ã«ãã£ã¦ãç©´ãã®æç¡ããåç´ãªæ§æè¦ç´ ã«å解ããã¨ãã®ãããã®çµã¿åããçãªã¤ãªããå ·åã¨ãã£ãæ§é ã調ã¹ããã¨ãã§ããããã¢ããã¼ãå¨åãçºæ®ããã®ã¯ã空éãå
ãã®å®ç¾©ãè¦ã¦ãµã¨æãåºãã®ã¯CWè¤ä½ã§ãããCWè¤ä½ã¯ãskeltonã®å ããããåinclusionã¯ãã¹ã¦cofibrationã§ããããä¸ã®å®ç¾©ã®æåã®æ¡ä»¶ããã¢ããã¼ç¾¤ã®å¤ããã«ãã¢ãã¸ã¼ç¾¤ã«ãã¦ã¿ãã°æãç«ã£ã¦ãããã¨ã示ããã ãã®ãããªå解ï¼filterï¼ãèãããã¨ã«ãããX = colim X_nã®æ§é ãå®æã«ãã¨ã¾ããåæ§ã«postnikovå解ã®å ´åã«ã¯X = lim X_nã®æ§é ãæ±ãããããªãã ããã«åç´ãªç©ºéXã«å¯¾ãã¦ã¯ããã®postnikovå解ãèããäºã«ããã ã¨ããå®å ¨åãå°ãããããããåççã«ã¯Xã®ãã¢ããã¼ç¾¤ããã¢ãã¸ã¼ç¾¤ã®è¨ç®ã ãã§æ±ããäºãã§ããããã®ããã«è¤éãªãã¢ããã¼ç¾¤ã®è¨ç®ããæ¯è¼çå®æãªãã¢ãã¸ã¼ç¾¤ã®è¨ç®ã«å¸°çãããäºãCartan-Serreã®æ¹æ³ã¨å¼ã°ãã¦ããã
"Morse function" redirects here. For anharmonic oscillators, see Morse potential. In mathematics, specifically in differential topology, Morse theory enables one to analyze the topology of a manifold by studying differentiable functions on that manifold. According to the basic insights of Marston Morse, a typical differentiable function on a manifold will reflect the topology quite directly. Morse
ãªãªã¼ã¹ãé害æ å ±ãªã©ã®ãµã¼ãã¹ã®ãç¥ãã
ææ°ã®äººæ°ã¨ã³ããªã¼ã®é ä¿¡
å¦çãå®è¡ä¸ã§ã
j次ã®ããã¯ãã¼ã¯
kåã®ããã¯ãã¼ã¯
lãã¨ã§èªã
eã³ã¡ã³ãä¸è¦§ãéã
oãã¼ã¸ãéã
{{#tags}}- {{label}}
{{/tags}}