ã¹ãã¯ãã©ã«ã¯ã©ã¹ã¿ãªã³ã° ããæ©ä¼ã ãå æ¥æ稿ããã¹ãã¯ãã©ã«ã¯ã©ã¹ã¿ãªã³ã°ã¨ãããå®éã«ãã£ã¦ã¿ããã¨æãã¾ããã½ã¼ã¹ã³ã¼ãã¯åçç£ãã¦ãä»æ¹ããªãã®ã§ãããæ§ã®ããã°ãããã¯ã£ã¦ãåããã¾ãã ãããæ§ã®ããã°ã«ãã£ãã³ã¼ãã¯ãã®ã¾ã¾ã§ã¯ãã¾ãåä½ããªãã£ãã®ã¨ãJupyter notebook ã®ãä½æ³ã«å¾ã£ã¦å°ãã³ã¼ããæç´ããã¦ãã¾ããï¼ãã®ã¾ã¾å®è¡ããã¨Graph is not fully connected, spectral embedding may not work as expected.ã¨ããwarningã表示ããã¾ããããã®warningã«é¢ãã¦ãGitHubã®issueã«ç´ æ´ãããåçãããã®ã§ããèªãã®ãé¢åèãã£ãã®ã§@taki__taki__æ§ã®ããã°ããã¹ãã¯ãã©ã«ã¯ã©ã¹ã¿ãªã³ã°ã®å®è¡é¨åã®ã³ã¼ãã1è¡ã ããåããã¾ãããã¾ãã%matplotlib
2016å¹´ã«ä½ã£ãè³æãå ¬éãã¾ããããæ¢ã«ããããå¤ããªã£ã¦ãå¯è½æ§ãé«ãã§ãã ï¼è¿½è¨ï¼æ°ããè¨äºã¯ é層çã¯ã©ã¹ã¿ãªã³ã°ã¨ã·ã«ã¨ããä¿æ° ãã覧ãã ãããï¼ æ¬å®ç¿ã§ã¯æ師ãªãå¦ç¿ã®ä¸ç¨®ã§ããé層çã¯ã©ã¹ã¿ãªã³ã°ãè¡ãªãã¾ãã * é層çã¯ã©ã¹ã¿ãªã³ã° ã¨ã¯ä½ããç¥ããªã人ã¯ä¸è¨ãªã³ã¯åç §â * é層çã¯ã©ã¹ã¿ãªã³ã°ã¨ã¯ * ã¯ã©ã¹ã¿ãªã³ã° (ã¯ã©ã¹ã¿ã¼åæ) ã¾ãã¯ãµã³ãã«ãã¼ã¿ã®åå¾ãã # URL ã«ãããªã½ã¼ã¹ã¸ã®ã¢ã¯ã»ã¹ãæä¾ããã©ã¤ãã©ãªãã¤ã³ãã¼ãããã import urllib # ã¦ã§ãä¸ã®ãªã½ã¼ã¹ãæå®ãã url = 'https://raw.githubusercontent.com/maskot1977/ipython_notebook/master/toydata/iris.txt' # æå®ããURLãããªã½ã¼ã¹ããã¦ã³ãã¼ãããååãã¤ããã url
ååã®è¨äºã®ç¶ãã§ãã åè:scipyã§é層çã¯ã©ã¹ã¿ãªã³ã° ååã®è¨äºã§é層çã¯ã©ã¹ã¿ãªã³ã°ãå®è¡ãå¯è¦åããã¨ããã¾ã§ç´¹ä»ãã¾ãããã ä»åã¯ä¸æ©æ»ã£ã¦linkageé¢æ°ã®æ»ãå¤ã®ä¸èº«ãè¦ã¦ã¿ã¾ãã ã¨ããããã linkage matrix ãprintãã¦çµæãè¦ã¦ã¿ã¾ãããã from sklearn.datasets import load_iris from scipy.cluster.hierarchy import linkage X = load_iris().data[::10, 2:4] print(X.shape) # (15, 2) # ã¦ã¼ã¯ãªããè·é¢ã¨ã¦ã©ã¼ãæ³ã使ç¨ãã¦ã¯ã©ã¹ã¿ãªã³ã° z = linkage(X, metric='euclidean', method='ward') print(z.shape) # (14, 4) print(z) #
ã¯ã©ã¹ã¿ã¼åæã§ããããã¨ï¼ååã¾ã§ã®å¾©ç¿ãããã¦ããã®ã§ããããæ¹ã¯èªã¿é£ã°ãã¦ãã ããï¼ ãã¯ã©ã¹ã¿ã¼åæãã¨ããã®ã¯ããã©ãã©ã§ããããããªããã®ãã ä¼¼ã¦ãããã®ã¯åãã°ã«ã¼ãã«ãä¼¼ã¦ããªããã®ã¯éãã°ã«ã¼ãã«åãããã¨ãããã¾ãã ãã°ã«ã¼ãåãããããã¨ã§ãããããããªããã®ããããã¨åãããããæãã«ãªãã¾ãã ãã¨ãã°ã ã¿ã¤ãã«ãç®æ¬¡ããªããé åºããã©ãã©ã®æ¬ã®å稿ç¨ç´ã大éã«åãåã£ã¦ãããã®ä¸èº«ãä½ãªã®ãç解ããã®ã¯å¤§å¤ã ã¨æãã¾ãã ã§ãããããã¿ã¤ãã«ãç®æ¬¡ãã¤ãã¦ããããæç« ã®æ§æãåãã£ã¦åãã£ã¦ããã°ãä¸èº«ã®æ¦è¦ã¯ã¤ãããã¯ãã§ãã ãã®ç®æ¬¡ãæç« ã®æ§æã¨ããã®ã¯ãå稿ç¨ç´å ¨ä½ãã°ã«ã¼ãåããã¦ããããã§ãã ãã©ãã©ã®å 容ãã°ã«ã¼ãã³ã°ãããã¨ã§ãä¸èº«ãç解ãããããªãã¾ãã ããã¹ããã¤ãã³ã°ã§ã®ã¯ã©ã¹ã¿ã¼åæãã大éã®ææ¸ã®å 容ããããããã©ããªãã®ã
1. æ¦è¦ density-connected points ãªã©ã®ãããªå¯åº¦ã«åºã¥ãã¦éåãä½æããææ³ã density-based clustering ã¨è¨ãã¾ãã 1-1. èæ¯ density-based clustering ãç解ããä¸ã§ã2ã¤ã®ãã©ã¡ã¼ã¿ã¨3ã¤ã®å½¢å¼å®ç¾©ã«ã¤ãã¦ç解ããå¿ è¦ãããã¾ãã 1-1-1. ãã©ã¡ã¼ã¿ : è¿åã®æ大åå¾ï¼maximum radius of the neighbourhoodï¼ : εè¿åå ã«å«ãæå°ã®ãªãã¸ã§ã¯ãæ°ï¼minimum number of points in an ε-neighbourhood of that pointï¼ 1-1-2. å½¢å¼å®ç¾©ï¼formal difinitionï¼ Definition 1. directly density-reachable 以ä¸ã®æ¡ä»¶ãæºãããã®ãã"ε, MinPts ã«
ãâ決å®æ¨âã¨ããé¸æè¢ã - æå±± å¹¹æ ååã®ã³ã©ã ã§ã¯ãã»ã°ã¡ã³ãã¼ã·ã§ã³ææ³ã¨ãã¦ãä¸è¬çã«ä½¿ãããå ååæãã¯ã©ã¹ã¿ã¼åæã«ã¯åé¡ãããäºã«ã¤ãã¦åãä¸ãã¾ãããã¾ãããã®åé¡ãé¿ããããã®ã»ã°ã¡ã³ãã¼ã·ã§ã³ææ³ã決å®æ¨ã«ã¤ãã¦æéå çã«åãä¸ãã¦é ãã¾ãããå¸å ´èª¿æ»ã¯ãªããã¯ã§ã¯ã決å®æ¨ãç¨ããã»ã°ã¡ã³ãã¼ã·ã§ã³ææ³ã¨ãã¦ãACATãã¨ããææ³ã«ã¤ãã¦ãæ²è¼ãã¦ãã¾ãããä»åã®åæè£è©±ã§ã¯ãåç´éè¨ã«ããã»ã°ã¡ã³ãã¼ã·ã§ã³ã¨ã決å®æ¨ãç¨ããã»ã°ã¡ã³ãã¼ã·ã§ã³ã®éãã«ã¤ãã¦ããã詳ããåãä¸ãããã¨æãã¾ãã â åç´éè¨ã§è¯ãã®ãï¼ æ¶è²»è ã®è¡åã«ã»ã°ã¡ã³ãéã§æ確ãªéããåºãæ§ã«ãããã®ãªãã購買æåãå価ãé«ã人ã«ãã©ã°ãç«ã¦ã¦æ½åºããã¯ãã¹éè¨ãåãã°ãããããªãããã¨æãããæ¹ãããã¨æãã¾ããä¾ãã°ããã製åã«ã¤ãã¦è³¼è²·æåãé«ã人ï¼âé常ã«è²·ãããâã¨âè²·ãããâã®ã
ã決å®æ¨ã -æéç彦 é·ãã£ãæ®æãããããçµãã£ã¦ç§ãããå£ç¯ã«ãªã£ã¦ãã¾ããããã¦ãä»æã¯ãã¼ã±ããã»ã»ã°ã¡ã³ãã¼ã·ã§ã³ã®è©±ããã¾ããã»ã°ã¡ã³ãã¼ã·ã§ã³ã«ã¯ï¼ã¤ã®ç°ãªãã¢ããã¼ããããã¨ãã話é¡ã§ãã â å¾æ¥ã®ã»ã°ã¡ã³ãã¼ã·ã§ã³ã¸ã®ä¸æº ãã¼ã±ãã£ã³ã°ã®å®åã§ã¯ãæ¶è²»è ã®ã©ã¤ãã¹ã¿ã¤ã«ã価å¤è¦³ãå ååæãã¦ããã®çµæãã¯ã©ã¹ã¿ã¼åæã«ããã¦å¸å ´ãåå²ããã¨ããã¢ããã¼ãããããã¥ã©ã¼ã«è¡ããã¦ãã¾ããã ããåæè ã®ææéãã«éã¹ã°ãã¯ã©ã¹ã¿ã¼éã§æ¶è²»è¡åã«éããåºã¦ãå¹ççãªå¸å ´å¯¾å¿ãã§ããã¯ãã§ããããããå®éã«ã¯ããã¯åå±ãããããªããã¨ãããã¾ããã©ã®ã¯ã©ã¹ã¿ã¼ã大差ããªãã®ã§å¸å ´å ¨ä½ã«è¨´æ±ããã®ã¨éããªãã¨ããããããä¼æ¥ãã¯ã©ã¹ã¿ã¼ã«ã¢ã¯ã»ã¹ã§ãããããªä»çµã¿ãç¨æã§ãã¦ããªããã¨ããåé¡ãããã¾ãããã¤ã¾ãæ¦å¿µã¬ãã«ã§ã®è°è«ãªãOKã§ãããå ·ä½çãªãã¼ã±ãã£ã³ã°ã»ã¢ã¯ã·
èªç¤¾ååã«å¯¾ããåå¿ãæããã«é«ãã¿ã¼ã²ãããè¦ã¤ãããå¸å ´ãã©ããã軸ã§åãã¦ããã°ãã®ã¿ã¼ã²ããã«è¾¿ãçãã®ããã¨ããã«ã¼ã«ãå¦ã¶ãã¿ã³ã¸ãã«ã»ã°ã¡ã³ãã¼ã·ã§ã³ã 調æ»ä¼ç¤¾ã«ã»ã°ã¡ã³ãã¼ã·ã§ã³ããé¡ããã¦ããå¾ãããã»ã°ã¡ã³ãéã§ååã«å¯¾ããåå¿ï¼è³¼è²·è¡åã購買æ欲ï¼ã«å·®ãåºã¾ãããå·®ãåºãªãã®ã§å¸å ´ã«ã¤ãã¦ã®å¦ã³ããªããã¿ã¼ã²ãããè¦ãã¦ãã¾ãããã©ããããããã§ããããï¼ ãããããã¯æµ·å¤å¸å ´ã ï¼ãã¨è¨ãããä¸ãããåãããªããªãã«æµ·å¤å¸å ´å±éããã¦ãã¾ããããä»å¾ã¯ã¡ã¤ã³ã¿ã¼ã²ããããã£ããè¦æ¥µãã製åãæµéãããã¢ã¼ã·ã§ã³æ¦ç¥ãæ¬æ ¼çã«åºãã¦ããããã¨æã£ã¦ãã¾ãããããçµé¨ä¸ã調æ»ä¼ç¤¾ã«ã»ã°ã¡ã³ãã¼ã·ã§ã³ããé¡ããã¦ãã解éã§ããªãã»ã°ã¡ã³ããåºã¦ããããã»ã°ã¡ã³ãéã«å·®ãåºãªãã®ã§ãã¿ã¼ã²ãããè¦ãã¾ããããã£ã¨ã¿ã¼ã²ãã£ã³ã°ã«ç¹ãããããªã»ã°ã¡ã³ãã¼ã·ã§ã³ææ³ã¯ç¡ãã®ã§ã
ï¼ï¼ææ°ï¼ç¬¬2åã¯ã³ãã© ããã®ã»ã°ã¡ã³ãã¼ã·ã§ã³ãæ¬å½ã«ä½¿ãã¾ããï¼ã - æå±± å¹¹æ ç¾å¨æ§ã ãªå¸å ´èª¿æ»ã§ã»ã°ã¡ã³ãã¼ã·ã§ã³ãè¡ããã¦ãã¾ãããå®åã§æ´»ç¨ã§ããã»ã°ã¡ã³ããä½ãã®ã¯ãªããªãé£ãããã®ã§ãã é常ãä¼æ¥ãã»ã°ã¡ã³ãã¼ã·ã§ã³ãããä¸ã§ã¾ãç¥ãããäºã¯ããã©ã®ã»ã°ã¡ã³ããçãã®ãè¯ããï¼ãã¤ã¾ãã¿ã¼ã²ãã£ã³ã°ã®æ ¹æ ã¨ãªãæ å ±ã§ããä¾ãã°ãããã®ã»ã°ã¡ã³ãã¯èªç¤¾è£½åã®è³¼è²·æ欲ã購買çããã¤ã¤ã«ãã£ããªãã¼ãçãé¡èã«é«ãããããã®ã»ã°ã¡ã³ããã¿ã¼ã²ããã«ããã¹ãã ããããããã©ããã£ãããã®ã¿ã¼ã²ããã«å¹ççã«ãªã¼ãã§ããã ãããã¨ããæ§ãªãã»ã°ã¡ã³ãã¼ã·ã§ã³ããã¿ã¼ã²ãã£ã³ã°æ¦ç¥ã¸ç¹ãããã¡ã¤ã³ãã£ã³ã°ã¹ã§ãã éã«ãã»ã°ã¡ã³ãã¼ã·ã§ã³ããããã©ãããã®ã»ã°ã¡ã³ãã¯ä¾¡å¤è¦³ãã¦ãã¼ã¯ã§ãã¾ãå¥ã®ãã®ã»ã°ã¡ã³ãã¯ã©ã¤ãã¹ã¿ã¤ã«ããããªã«ç¹å¾´çã§ããã¾ãã»ã»ã»å¾¡ç¤¾è£½åã¸ã®è³¼è²·æ欲ã
[é£è¼]ããªã¼ã½ããã«ãããã¼ã¿è§£æã»ãã¤ãã³ã°ç¬¬28å ï¼²ã¨ã¯ã©ã¹ã¿ã¼åæ(1) 1ï¼ã¯ã©ã¹ã¿ã¼åæã¨ã¯ æã ã¯ãç©äºãæ´çæ´é ããéã«ã¯ãæ©è½ãå½¢ç¶ãªã©ã®å´é¢ããä¼¼ã¦ãããã®ãåãã®ã¨ããã«éãã¦ãçä»ãããããã¨åãããã¼ã¿ã«ã¤ãã¦ããã¼ã¿æ§é ã®å´é¢ããä¼¼ã¦ããåä½ãåãã®ã°ã«ã¼ãã«ä»åãããã¨ãå¿ è¦ã§ããå ´åãããããã¼ã¿ãµã¤ã¨ã³ã¹ã«ãããåé¡ã®ããã®æ¹æ³ã¯ãå¦ç¿(æ師ãè¨ç·´)ãã¼ã¿ãããåé¡æ¹æ³ã¨å¦ç¿ãã¼ã¿ããªãæ¹æ³ã«å¤§å¥ãããã ããã§è¨ãå¦ç¿ãã¼ã¿ã¨ã¯ãã©ã®åä½ãã©ã®ã°ã«ã¼ãã«å±ããããæ¢ç¥ã§ãããã¼ã¿ã§ãããã°ã«ã¼ãã®æå±ã示ããã¼ã¿ã¯å¤çåºæºã¨ãå¼ã°ãã¦ãããå¦ç¿ãã¼ã¿ãããå ´åã®åé¡æ¹æ³ã¯ãã©ã®åä½ãã©ã®ã°ã«ã¼ãã«å±ããããæ¢ç¥ã§ãããã¼ã¿ãããåé¡ã«é¢ããã¢ãã«ãä½æãããã®ã¢ãã«ã«åºã¥ãã¦ãã°ã«ã¼ãã®å±æ§ãæªç¥ã§ãããã¼ã¿ãæãä¼¼ã¦ããã¨å¤æãããã°ã«ã¼ãã«å²ãå½
ã©ã³ãã³ã°
ã©ã³ãã³ã°
ã©ã³ãã³ã°
ãªãªã¼ã¹ãé害æ å ±ãªã©ã®ãµã¼ãã¹ã®ãç¥ãã
ææ°ã®äººæ°ã¨ã³ããªã¼ã®é ä¿¡
å¦çãå®è¡ä¸ã§ã
j次ã®ããã¯ãã¼ã¯
kåã®ããã¯ãã¼ã¯
lãã¨ã§èªã
eã³ã¡ã³ãä¸è¦§ãéã
oãã¼ã¸ãéã
{{#tags}}- {{label}}
{{/tags}}