ã¹ãã¯ãã©ã«ã¯ã©ã¹ã¿ãªã³ã° ããæ©ä¼ã ãå æ¥æ稿ããã¹ãã¯ãã©ã«ã¯ã©ã¹ã¿ãªã³ã°ã¨ãããå®éã«ãã£ã¦ã¿ããã¨æãã¾ããã½ã¼ã¹ã³ã¼ãã¯åçç£ãã¦ãä»æ¹ããªãã®ã§ãããæ§ã®ããã°ãããã¯ã£ã¦ãåããã¾ãã ãããæ§ã®ããã°ã«ãã£ãã³ã¼ãã¯ãã®ã¾ã¾ã§ã¯ãã¾ãåä½ããªãã£ãã®ã¨ãJupyter notebook ã®ãä½æ³ã«å¾ã£ã¦å°ãã³ã¼ããæç´ããã¦ãã¾ããï¼ãã®ã¾ã¾å®è¡ããã¨Graph is not fully connected, spectral embedding may not work as expected.ã¨ããwarningã表示ããã¾ããããã®warningã«é¢ãã¦ãGitHubã®issueã«ç´ æ´ãããåçãããã®ã§ããèªãã®ãé¢åèãã£ãã®ã§@taki__taki__æ§ã®ããã°ããã¹ãã¯ãã©ã«ã¯ã©ã¹ã¿ãªã³ã°ã®å®è¡é¨åã®ã³ã¼ãã1è¡ã ããåããã¾ãããã¾ãã%matplotlib
A Taxonomy for Semi-Supervised Learning Methods Seeger, M. Ch 2(pp.15-31)ãã©ã¡ããã¨ããã¨overviewã£ã½ãï¼åæ師ããå¦ç¿ã®åé¡ã«ã¤ãã¦æ¸ããã¦ããï¼ç¸å¤ãããç°¡åãªã¾ã¨ãã¡ã¢ï¼é©å½ãªæ訳ããï¼ãã¨ã¯ã¦ãã®æ°å¼ã綺éºã§ã¯ãªãã®ã§ï¼å°ãããã°ã£ã¦ã¿ãï¼ã¯ã¦ãªããã°ã®æ¹ãæ°å¼ç¶ºéºãããã®ã§ä¹ãæãããããªãâ¦ï¼ 1. The Semi-Supervised Learning Problem åæ師ããå¦ç¿ã«ã¯2ã¤ã®åºæ¬çææ³ããã unlabeled dataãç¡è¦ããæ師ããåé¡åé¡ 2. Paradigms for Semi-Supervised learning åæ師ããå¦ç¿ã¯æ師ããå¦ç¿ã®ãã¯ããã¯ãªã®ã§ï¼å½ç¶çæã¢ãã«çã¢ããã¼ãã¨èå¥ã¢ãã«çã¢ããã¼ãã«åé¡ã§ãã ãã®ç¯ã§ã¯çµ±è¨å¦ãæ©æ¢°å¦ç¿ã§ããç¨ã
Machine Learning Advent Calendar 2012ã«åå ããã¦ããã ãã¾ããï¼@yonetaniryo ã¨ç³ãã¾ãï¼ç¾å¨ï¼å士å¾æ課ç¨2å¹´ã§ï¼ã³ã³ãã¥ã¼ã¿ãã¸ã§ã³ã»ãã¿ã¼ã³èªèã«èå³ãããã¾ãï¼æè¿ï¼ã¯ã©ã¹ã¿ãªã³ã°ææ³ã®ä¸ã¤ã§ããã¹ãã¯ãã©ã«ã¯ã©ã¹ã¿ãªã³ã°ã«ã¤ãã¦åå¼·ããæ©ä¼ããã£ãã®ã§ï¼ä»åã¯ãããç´¹ä»ãããã¨æãã¾ãï¼ 2013 1.24 ããã ããã³ã¡ã³ãããã¨ã«ï¼å³ãä¸é¨æ´æ°ãã¾ããï¼ ã¯ããã« æ¬è¨äºã®ã¢ããã¼ã·ã§ã³ æ¬è¨äºã§ã¯ï¼ãã¹ãã¯ãã©ã«ã¯ã©ã¹ã¿ãªã³ã°ã«ã¤ãã¦ä½ãç¥ããªãã人ããã¹ãã¯ãã©ã«ã¯ã©ã¹ã¿ãªã³ã°ã¨ã¯ä½ãã大éæã«ã¯ç¥ã£ã¦ãããç¶æ ã«æã£ã¦ãããã¨ãç®æ¨ã«ãã¦ãã¾ãï¼å ·ä½çã«ã¯ï¼æç®[1]ã®æåã®æ¹ãç´¹ä»ãã¾ãï¼ æ¬è¨äºã§æ±ãç¯å² ãã¼ã¿ã®ã°ã©ã表ç¾ãã¹ãã¯ãã©ã«ã¯ã©ã¹ã¿ãªã³ã°ã®ã¢ã«ã´ãªãºã ãæ±ãã¾ãï¼ æ¬è¨äºã§æ±ããªãç¯å² Normali
ã©ã³ãã³ã°
ã©ã³ãã³ã°
ã©ã³ãã³ã°
ãªãªã¼ã¹ãé害æ å ±ãªã©ã®ãµã¼ãã¹ã®ãç¥ãã
ææ°ã®äººæ°ã¨ã³ããªã¼ã®é ä¿¡
å¦çãå®è¡ä¸ã§ã
j次ã®ããã¯ãã¼ã¯
kåã®ããã¯ãã¼ã¯
lãã¨ã§èªã
eã³ã¡ã³ãä¸è¦§ãéã
oãã¼ã¸ãéã
{{#tags}}- {{label}}
{{/tags}}