Anterior, a company that uses AI to expedite health insurance approval for medical procedures, has raised a $20 million Series A round at a $95 million post-money valuation led byâ¦
Twitter ã®ã¿ã¤ã ã©ã¤ã³ãä¿åãã¦ããã¨ãªã«ãã¨ä¾¿å©ãªã®ã§ãè²ã ã¨ä¿åå½¢å¼ãå¤ããªãã 4 å¹´ãããè¨é²ãç¶ãã¦ããããã¤ã¼ãã®ä¿åã便å©ãããã®ã§ããã¤ã»ã¼ãã¨ãããµã¼ãã¹åã¾ã§ããããã¤ã¦ã¯ããã¹ãã§ãMongoDB ã MySQL ã¨ã Groonga ã¨ããããããã£ã¦ãããã©ããåé¡ãªããã ãã©ãå¢ãç¶ãããã°ãã¼ã¿ãä¿åããå ´æã¨ãã¦èãã㨠BigQuery ãç¾ä»£ã«ããããã¦ããããªã®ã§ãã¡ãã«ç§»è¡ããã BigQuery ã« TL ãä¿åããã¨ã§ããã㨠TL ã®å ¨ã¦ã®ãã¼ã¿ããã«ã¹ãã£ã³ã§ãããããã¯ããªã便å©ã§ãä»åãã®ããã°è¨äºãæ¸ãã«ããã£ã¦ã âBigQueryâ ã TL ããæ¤ç´¢ããã°ãä¿¡é ¼ã§ãããã©ãã¼ã¤ã³ã°ã®äººã ã®å£°ãè¦ããã¨ãã§ãããããã«ãããæ CA 社ã§ã¯ 5000 å°ã® MongoDB ã¯ã©ã¹ã¿ã§ BigQuery ã«å¯¾æãã¦ãããã¨ãã
æ¿åºã®ITç·åæ¦ç¥æ¬é¨ã¯2014å¹´6æ19æ¥ãããã¼ã½ãã«ãã¼ã¿ã«é¢ããæ¤è¨ä¼ãã®ç¬¬12åä¼åãéå¬ããå人æ å ±ä¿è·æ³æ¹æ£ã«åããæ¤è¨ä¼ã®å¤§ç¶±æ¡ãäºæ¿ããã7æã«1ã«æéã®ãããªãã¯ã³ã¡ã³ããå®æ½ãã2015å¹´1æã®é常å½ä¼ãç®æãã¦æ³æ¡ã®çå®ãé²ããã æ¤è¨ä¼æ¡ã§ã¯ãä¼æ¥ãªã©ãå人æ å ±ãåå¾ããéã«ç¤ºããå©ç¨ç®çããã¨ã«ãªã£ã¦å¤æ´ããæç¶ãã«ã¤ãã¦ãç®çå¤æ´ããæ¬äººãååã«èªç¥ã§ããæç¶ãã工夫ãããã¨ãããã¾ããåå¾æãã大ããç°ãªãå©ç¨ç®çã«å¤æ´ãããã¨ã«ãªããªããããå®å¹çãªè¦å¾ãå°å ¥ãããã¨ããè¨è¿°ãå ããããã å人ãã¼ã¿ã第ä¸è æä¾ããå ´åã«ã¤ãã¦ããç¾è¡æ³ã®è¶£æ¨ãè¸ã¾ããéç¨ãå³ããã¨ããããããã¯ããã©ã¤ãã·ã¼ããªã·ã¼ãä¸æ¹çã«å¤æ´ãã¦ããªããã¢ã¦ãæ¹å¼ã§å±¥æ´æ å ±ã第ä¸è æä¾ãããã¨ããè¡åãããè ããç¾ãã¦ããã¨ããæè¦ã«å¯¾å¿ãããã®ã¨ã¿ãããã æ¬äººåæãå¾ãªãã¦ã第
第ï¼å ãã¼ã½ãã«ãã¼ã¿ã«é¢ããæ¤è¨ä¼ãè°äºæ¬¡ç¬¬ æ¥ãæããå¹³æï¼ï¼å¹´ï¼æï¼ï¼æ¥ï¼ç«ï¼ï¼ï¼ï¼ï¼ï¼ï½ï¼ï¼ï¼ï¼ï¼ å ´ãæããä¸å¤®åååºèï¼å·é¤¨ãï¼ï¼éãï¼ï¼ï¼ï¼ä¼è°å®¤ è°ãäº ï¼ï¼ï¼éä¼ ï¼ï¼ï¼å±±æ¬ITæ¿çæ å½å¤§è£ããã㤠ï¼ï¼ï¼ãã¼ã¿æ´»ç¨å£ä½ããã®ãã¢ãªã³ã°çã«ã¤ã㦠ï¼ï¼ï¼æè¡æ¤è¨WGããã®ä¸éå ±å ï¼ï¼ï¼å®ç¾©ã¨å人æ å ±åæ±äºæ¥è çã®ç¾©åçã®è«ç¹ã«ã¤ã㦠ï¼ï¼ï¼éä¼
BeakerX is a collection of kernels and extensions to the Jupyter interactive computing environment. It provides JVM support, Spark cluster support, polyglot programming, interactive plots, tables, forms, publishing, and more. BeakerX supports: Groovy, Scala, Clojure, Kotlin, Java, and SQL, including many magics; Widgets for time-series plotting, tables, forms, and more (there are Python and JavaSc
From Fluentd Meetupã«è¡ã£ã¦ãã¾ãã ãããèªãã æãBigQueryã®æ¤ç´¢ã¹ãã¼ãã«ã¤ãã¦ã¡ãã£ã¨è£è¶³ããããªã£ãã確ãã«Fluentd Meetupã®ãã¢ã§ã¯9å件ã7ç§ç¨åº¦ã§æ¤ç´¢ãã¦ããããBigQueryã®çã®å®åã¯ãããã1ã2ã±ã¿ä¸ã ããã ãã¡ãã£ã¨æå ã§å°ã大ããã®ãã¼ãã«ã§è©¦ãã¦ã¿ããã120åè¡ã®æ£è¦è¡¨ç¾ãããä»ãéè¨ã5ç§ã§å®äºãããè«ãã証æ ã§ããã¢ãããªï¼1å16ç§ï¼ãä½ã£ã¦ã¿ãï¼ From The Speed of Google BigQuery ããã¯éããããä½ãã®ã¤ã³ããã§ããï¼æåã«ãã¢ãè¦ãæããæã£ãï¼ãæ£è¦è¡¨ç¾ãããããå¤ãã¦ã¿ã¦ãã¹ãã¼ãã¯å¤ãããªããã¤ã¾ããã¤ã³ããã¯ã¹ãäºåæ§ç¯ã§ããªãã¯ã¨ãªã«å¯¾ãã¦ãã®ã¹ãã¼ããªã®ã§ããã ä¾¡æ ¼ãå®ãããããã«120åè¡ã®ã¯ã¨ãªã¯1åã§200åãããã£ã¦æ°è»½ã«å®è¡ã§ããªãããã§ãããã1.2å
é«æ¬¡å ãã¼ã¿ã®å¤ãå¤æ¤åºã«ã¤ãã¦ã®ã¡ã¢ï¼ é«æ¬¡å ãã¼ã¿ã¨æ¬¡å ã®åªã 次å ã大ãããªãã»ã©ï¼ç¹ã®éã®è·é¢ã¯åä¸ã«ãªã£ã¦ããï¼ ä¾ã¨ãã¦ï¼2000åã®ç¹ã®å座æ¨ãä¸æ§ä¹±æ°ã§çºçããã¦ï¼æ¬¡å ãå¤ããªããç¹ã®éã®è·é¢ã®å¹³åå¤ï¼æ大å¤ï¼æå°å¤ï¼å¹³åå¤Â±1Ïï¼å¹³åå¤Â±2Ïãã¿ã¦ã¿ããï¼ library(ggplot2) set.seed(123) # 次å ã®ãªã¹ã dims <- c(1:9, 10*(1:9), 100*(1:10)) # ç®åºããçµ±è¨é stats <- c("min", "mean-sd", "mean", "mean+sd", "max") # çºçãããç¹ã®åæ° N <- 2000 # å次å ã«å¯¾ãã¦ç®åºããçµ±è¨éãæ ¼ç´ããè¡å ans <- matrix(NA, length(dims), length(stats), dimnames=list(dims, stats))
*ãã¬ã¸ã£ã¼ãã¼ã¿ã¯ãã¼ã¿åéãä¿åãåæã®ããã®ã¨ã³ããã¼ã¨ã³ãã§ãµãã¼ããããã¯ã©ã¦ããµã¼ãã¹ã§ãã åå㯠Treasure Data Service ãçãã¼ã¿ã¹ãã¬ã¼ã¸ã«ããããã¦ããã¨ããåæï¼ã¤ã¾ãTreasure Data Service ãå©ç¨ãã¦ããåæï¼ã§ï¼ããã¨BIãªã©ã®ããã³ãã¨ã³ããã·ã¼ã ã¬ã¹ã«ç¹ãããã®ä¸éãã¼ã¿ãã¼ã¹ã¯ã©ããè¯ããï¼ã¨ãã観ç¹ã§ã話ãã¾ãããããã¦Â TQAãã©ã®ãããªãã®ããç解ãï¼Redshiftã¨ã¯ç«ã¤ã¬ã¤ã¤ã¼ãéããã¨ãããã£ã¦é ãäºãç®çã§ããã Treasure Data Service ã¯ã©ã®ãããªã±ã¼ã¹ã«åãã¦ãããï¼ ããã§ã¯è¦ç¹ãå¤ãã¦ï¼ç¾å¨ä¿æãã¦ãããã¼ã¿ã®æ§è³ªãèæ ®ããä¸ã§ï¼ã©ã®ãµã¼ãã¹ï¼ãã¼ã¿ãã¼ã¹ï¼ãæ´»ç¨ãããããããèãã¾ãã ä¸å³ã¯ç¾å¨ããããã®ä¼æ¥ãæã£ã¦ãããã¼ã¿ã«å¯¾ãã¦ï¼ ãã¼ã¿ãµã¤ãº ã¹ãã¼ãå¤æ´å¯è½æ§
EnterpriseZineï¼ã¨ã³ã¿ã¼ãã©ã¤ãºã¸ã³ï¼ç·¨éé¨ã§ã¯ãæ å ±ã·ã¹ãã æ å½ãã»ãã¥ãªãã£æ å½ã®æ¹ã åãã«ãEnterpriseZine DayãSecurity Online DayãDataTechã¨ããã3ã¤ã®ã¤ãã³ããéå¬ãã¦ããã¾ããããããç·¨éé¨ç¬èªã®åãå£ã§ãæ¥çãã¬ã³ããææ°äºä¾ãç¶²ç¾ ãææ°ã®ååãç¥ããã¨ãã§ããå ´ã¨ãã¦ã好è©ãå¾ã¦ãã¾ãã
ãã³ã³ããããã³No.1ãã®æ å ã¯ã©ãã«ï¼ã購買ãã¼ã¿ã§èªã¿è§£ãâã¬ã¸åã®æ»é²æ¦âï¼é£è¼ã»ãã¼ã¿ãµã¤ã¨ã³ãã£ã¹ãã®è¦ç¹ ããä¸ç·ã«ããã³ã¯ãããã§ããï¼ã çããã¯ãã³ã³ããã¨ã³ã¹ã¹ãã¢ã§ããã³ã®å£²ãè¾¼ã¿ãè³ã«ãããã¨ã¯ããã¾ãããï¼ãç§ã¯æ·±å¤ã®å°è ¹ã®ç©ºããæãªããã«ãããè³ã«ããã¨ãã¤ãã¤ãã·ã§ã¼ã±ã¼ã¹ã«ç®ã奪ããã¦ãã¾ãã¾ãã ã³ã³ããããã³ã®ã·ã§ã¼ã±ã¼ã¹ãçºãã¦ã¿ãã¨ããã¼ã¹ã®å³ã®åä¸ãããã¾ãã¾ãªããªã¨ã¼ã·ã§ã³ã®æä¾ã¾ã§ãå社ã®ä¼æ¥åªåã¨åç£ç¢ç£¨ãæãã¾ããããã§ä»åã¯ãããªâã¬ã¸åã®æçµæ»é²æ¦âãã¨ã³ã³ããããã³ã«ã¤ãã¦ãç¡æ家è¨ç°¿ã¢ããªãReceRecoãï¼ã¬ã·ã¬ã³ï¼ã®è³¼è²·ãã¼ã¿åæãéãã¦èå¯ãã¦ã¿ããã¨æãã¾ãã ã¹ãã¼ããã©ã³ã§ã¬ã·ã¼ãåçãæ®ãã ãã§å®¶è¨ç°¿ãä½ããç¡æiPhoneï¼Androidã¢ããªããªãªã¼ã¹å¾1å¹´éã§ãã¦ã³ãã¼ãæ°ã¯130ä¸ãç»é²ã¬ã·ã¼ãææ°ã¯220
å種ä¼å¡ã«ã¼ããã¯ã¬ã¸ããã«ã¼ããSNSãã¹ãã¼ããã©ã³ã¢ããªãwebãµã¼ãã¹ã«ãã£ã¦ããã¤ãããªãæã常ã«æ°ããªãã¼ã½ãã«ãã¼ã¿ãçæããã¦ãããæ¶è²»è ã¨ãã¦ã¯ãå©ä¾¿æ§ã享åãã¤ã¤ããä¸å®ãæãããã¨ãããã®ããæ£ç´ãªã¨ããã ããã ä¸æ¹ãäºæ¥è ã®å´ããç¾è¡ã®å人æ å ±ä¿è·æ³ã¨ä¸»å大è£å¶ã«ãã縦å²ãã®ã¬ã¤ãã©ã¤ã³ã®ç¾è¡å¶åº¦ã«ããªã¹ã¯å¤æã®å°é£ããæããæ¹ãå¤ãã®ã§ã¯ãªãã ãããã 米調æ»ä¼ç¤¾IDCã1æ27æ¥ï¼ç¾å°ï¼ã«çºè¡¨ããã¬ãã¼ãã«ããã¨ã2013å¹´ã«ã¯ä¸çã®ã¹ãã¼ããã©ã³åºè·å°æ°ãåãã¦10åå°ãçªç ´ããã¨ãããä»å¾ã¯ã¹ãã¼ãããã¤ã¹ã®å°é ã¯ãã¨ãããã¦ã§ã¢ã©ãã«ãã»ã³ãµã¼ãããçããããè¨å¤§ãªã»ã³ãµã¼ãã¼ã¿ãçã¾ãã¦ãããä»å¾ãã°ããããã©ã¤ãã·ã¼ã®åé¡ã¯é¿ãã¦éããªã課é¡ã§ããã 2013å¹´æ«ãå é£å®æ¿ã®ããã¼ã½ãã«ãã¼ã¿ã«é¢ããæ¤è¨ä¼ãã¯ãå人æ å ±ããã©ã¤ãã·ã¼ã«é¢é£ããæ³å¶åº¦
OSC 2013 Tokyo/Fallãæ å ±å¦çå¦ä¼ ããã°ãã¼ã¿æ´»ç¨å®åãã©ã¼ã©ã ã®ç´¹ä»ã¨ãä»å¾ã®æ´»åã«ã¤ãã¦ãéå¬å ±å #osc13tk #bigdata 2013.10.24 Categoryï¼åå¼·ä¼ã»ã¤ãã³ã Tagï¼OSC ,ãã¼ã¿ãµã¤ã¨ã³ã¹ ,ããã°ãã¼ã¿ 2013å¹´10æ20æ¥(æ¥)åå10æï½åå11æã«ãªã¼ãã³ã½ã¼ã¹ã«ã³ãã¡ã¬ã³ã¹2013 Tokyo/Fallã«ã¦ãæ å ±å¦çå¦ä¼ã»ããã°ãã¼ã¿æ´»ç¨å®åãã©ã¼ã©ã 代表ç³äºä¸å¤«å çãã«ããããã°ãã¼ã¿ã«ã¤ãã¦ã®ã»ããã¼ãéå¬ããã¾ããããã®å ±åã§ãï¼ by CodeIQéå¶äºåå± ã»ããã¼æ¦è¦ ãã®ã»ããã¼ã¯ãæ å ±å¦çå¦ä¼ã»ããã°ãã¼ã¿æ´»ç¨å®åãã©ã¼ã©ã 主å¬ã§è¡ããã¾ãããååã¯ããã°ãã¼ã¿ãå·¡ãæè¿ã®ç¶æ³ãããã°ãã¼ã¿æ´»ç¨å®åãã©ã¼ã©ã ã®çãã«ã¤ãã¦ã®è©±ãå¾åã¯ãã¼ã¿ãµã¤ã¨ã³ã¹ã«é¢ãã£ã¦ããæ¹ã ã«ããããã«ãã£ã¹ã«ãã·ã§ã³ãè¡
TOPICS Data Science , Database çºè¡å¹´ææ¥ 2013å¹´09æ PRINT LENGTH 310 ISBN 978-4-87311-640-2 åæ¸ Bad Data Handbook FORMAT PDF å¤ã®æ¬ è½ãå½¢å¼ããå¤ããã¬ã³ã¼ããã¨ã³ã³ã¼ãã£ã³ã°å½¢å¼ãä¸æãªæååããããããã¼ã¿ãã¨èããæã«æãæµ®ã¹ãå ¸åä¾ã§ããããããããã以å¤ã«ãããããããã¼ã¿ã«ã¢ã¯ã»ã¹ã§ããªãããæ¶ãã¦ãã¾ã£ãããæ¨æ¥ã¨éã£ã¦ãããããã¼ã¿ã¯ãããå½¢å¼ãå¦çã«é©ãã¦ããªãããªã©ããã¼ã¿ãåéã»åæããã¨ã³ã¸ãã¢ã¯ããããã®ãããããã¼ã¿ãã¨æ£é¢ããåããããªããã°ãªããªããã¨ãå¤ã ããã¾ããæ¬æ¸ã§ã¯ããããã®åé¡ã®ãããã¼ã¿ã®ãã¿ã¼ã³ãç´¹ä»ãããã®å¯¾å¦æ³ã解説ãã¦ãã¾ãã 19人ã®ãã¼ã¿åæã®å°é家ããèªãã®çµé¨ãéãã¦å¾ãããã¾ãã¾ãªæè¨ãå®è·µçãªæ¹æ³è«çã詳述ããæ¬æ¸ã¯
ãã¤ãªãã¢ãç¬èªã®æ¸æ»æ å ±ãã¹ãã¼ãã«ã¼ããã®æä¾ãéå§ããã®ã2006å¹´ãããããç´7å¹´ãããã¦èç©ããæ¸æ»æ å ±ã¯ã2013å¹´ãã¹ãã¼ãã«ã¼ãã¢ã¤ãã¨ããæ°ãã¼ã¿ãå ãããã精度ã®é«ãæ¸æ»æ å ±ã¸ã¨é²åãããæ¸æ»ã®ãã¼ã¿ãéããåæããæä¾ããããã®è£ã«ã¯ã©ããªä»çµã¿ããããã©ããã¼ã¿ã¯æ´»ç¨ããã¦ããã®ããã«ã¼ã¨ã¬ã¯ãããã¯ã¹äºæ¥çµ±æ¬é¨ã«ã¼äºæ¥æ¦ç¥é¨æ å ±ãµã¼ãã¹ãã©ãããã©ã¼ã ã»ã³ã¿ã¼ãã©ãããã©ã¼ã éçºé¨ç 究éçºèª²ãã¼ã¿ãµã¤ã¨ã³ãã£ã¹ãã®éç°å¬æµ©æ°ã«è©±ããèããã èµ°è¡å¯è½ãªéè·¯æ å ±ã¯ãã¹ã¦ã«ãã¼ãããã¹ãã¼ãã«ã¼ãã --æåã«ã¹ãã¼ãã«ã¼ãã«ã¤ãã¦æãã¦ããã ãã¾ããã ãã¤ãªãã¢ãç¬èªã«æä¾ããæ¸æ»æ å ±ãã¹ãã¼ãã«ã¼ãã§ãããã¼ã¹ã¯ãã«ãããã§ãªã¢ãã®å¯¾å¿ã«ã¼ããã²ã¼ã·ã§ã³ã¦ã¼ã¶ã¼ãèµ°ã£ãè»è·¡ããæ¸æ»æ å ±ãçæãã¦ãããä¸è¬è²¡å£æ³äººé路交éæ å ±éä¿¡ã·ã¹ãã ã»ã³ã¿ã¼ãæä¾ããæ¸æ»æ å ±
Logéè¨ã®è¨è¨ãåè ãé²æã®å·¨å¤§ãã¼ã¿ãLogéè¨ç¨DBã¨ã·ã¹ãã æ§æã®ç¾ããè¨è¨ãèãã - Yuta.Kikuchiã®æ¥è¨ 人çãååãã«æ¥½ãããã¨ãå¿ã«èªã£ã@yutakikuchi_ã§ããæè¿ã¯ãã®ããã°ã§ãé²æã®å·¨å¤§ãã¼ã¿ãã¨ããã¿ã¤ãã«ã§ä½åãBigDataã«é¢ããè¨äºãæ¸ãã¦ãã¾ããååã¯Logéè¨ç¨DBã¨ã·ã¹ãã æ§æã®ç¾ããè¨è¨ãèããã¨ããé¡ã§InnoDBãInfiniDBã使ã£ãLogéè¨ã®merit/demeritãSystemPerformanceã«ã¤ãã¦è¨è¿°ãã¾ãããããããæéãããã¦åèããInnoDBã使ãå ´åã®ã¡ãªãã/ãã¡ãªããã¨æ³¨æäºé ãä¸è¶³ãã¦ããäºã«æ°ã¥ããã®ã§ããã§è¿½è¨ãã¾ããæ´ã«éè¨ã®ç·æ¥åº¦ã«åããã¦ä½¿ç¨ããDBãå¤ãã¾ãããªã¢ã«ã¿ã¤ã ã§ã¯Redisãå®æå¦çã§ã¯Mysqlã使ã£ã¦éè¨ãããã¨ã試ãã¦ã¿ããã¨æãã¾ãã Logéè¨æ¹æ³ã®me
次ã®è¨äº ããã¦è¨ªãããã¼ã¿ã»ã¨ã³ããã¼ç¤¾ä¼ã®å°æ¥åãããã°ãã¼ã¿ã ãã§ã¯è¦ããªãæ å ±ç¤¾ä¼ã®çå®ã[第5åï¼½é´æ¨éä»æ°ããã¸ãã¹ã«ã¯ãã¼ã¿ã«è¡¨ç¾ã§ããªãå¼·ãããããï¼1ï¼ 2013.03.21 å¤ãã®æ¥çã§ITãæ´»ç¨ããããã¸ãã¹ã®å¹çåãæ¨é²ãããããã«ãªããã¾ãã¤ã³ã¿ã¼ãããã使ã£ãæ°ããªè²©å£²ãã£ãã«ã®æ§ç¯ããã¾ãã¾ãªåéã§è¡ããã¦ãã¾ãããããããITã®æ´»ç¨ããé²ããããä¸æ¹ã§ãæ¬å½ã«ITãæ´»ç¨ã§ãã¦ããã®ãï¼ãã¾ãã¯ãããã§ITãæ´»ç¨ãã¹ããªã®ãï¼ãã¨ããçåã«ç´é¢ããã±ã¼ã¹ãåºã¦ãã¾ããã ä¾ãã°ãç¾è²¨åºããã®ã²ã¨ã¤ã§ãããã®10ã20å¹´ã§ç±å¿ã«ç¤¾å ã·ã¹ãã ã®ãªãã¬ã¤ã¹ãé²ããEã³ãã¼ã¹ã¸ã®é²åºãé²ãã¦ãã¾ãããããããå¹çæ§ãç®æããã¡ãªECã®ã¢ãã«ã¨ãããã¦ãªãã大äºã«ããç¾è²¨åºã®ãã¸ãã¹ãã©ã調åãããã®ãã¯å®ã¯ç°¡åãªåãã§ã¯ããã¾ãããåæ§ã«ãæ å ±ããã¼ã¿ã¯ã©ãããä½ç½®ä»
Hi, Iâm Shunsuke Nakamura (@sunsuk7tp). Just half a year ago, I completed the Computer Science Masterâs program in Tokyo Tech and joined to NHN Japan as a member of LINE server team. My ambition is to hack distributed processing and storage systems and develop the next generationâs architecture. In the LINE server team, Iâm in charge of development and operation of the advanced storage system whi
ã©ã³ãã³ã°
ã©ã³ãã³ã°
ã©ã³ãã³ã°
ãªãªã¼ã¹ãé害æ å ±ãªã©ã®ãµã¼ãã¹ã®ãç¥ãã
ææ°ã®äººæ°ã¨ã³ããªã¼ã®é ä¿¡
å¦çãå®è¡ä¸ã§ã
j次ã®ããã¯ãã¼ã¯
kåã®ããã¯ãã¼ã¯
lãã¨ã§èªã
eã³ã¡ã³ãä¸è¦§ãéã
oãã¼ã¸ãéã
{{#tags}}- {{label}}
{{/tags}}