We asked all learners to give feedback on our instructors based on the quality of their teaching style.
é»åã»æ å ±ç³» 3å¹´å¤å¦æè¬ç¾©ãã³ã³ãã¥ã¼ã¿ã¢ã«ã´ãªãºã 第2ãè¬ç¾©æ¡å (2013年度ç) ç°æµ¦å¥æ¬¡æ 常æ追å ã»æ´æ°ä¸ï¼ NEW (æ°ããã®ãä¸. æ¥ä»ãã¯æ²è¼æ¥) 2013/8/26 : 試é¨ã®è§£çã¨è¬è© ãã¢ãããã¾ãã. 2013/8/26 : 試é¨ã®çæ¡ãäºå室ããè¿å´ãã¦ãã¾ã. 2013/8/10 : ã¬ãã¼ãæåºè ã®ãªã¹ããä½ãã¾ãã. 2013/8/3 : 課é¡ã®æåºæ¹æ³è©³ç´° ãè¨è¿°ãã¾ãã. 2013/6/16 : 6/24ã®ææ¥æéã¯PCãç¨ããæ¼ç¿ã§ã. 6/10ã«è¡ã£ãæ¼ç¿ã®ç¶ãããã¾ã. ãã®ãã¼ãã§ã¬ãã¼ã課é¡ãåºã¾ã. å½æ¥ä½ãããã®ã, ããã¾ã§ã«ä½ãæä½éãã¦ããã°ããã®ã, ä¸è¨ã®ãã¼ã¸ãè¦ã¦ããã¦ä¸ãã. 2013/6/5 : 次å6/10ã®ææ¥æéå ã®ä¸é¨ã使ã£ã¦, PCãç¨ããæ¼ç¿ãè¡ãã¾ã. ãã®ãã¼ã¸ ãè¦ã¦äºåã«åä½ç¢ºèªããã¦ããã¦ãã ãã.
21:25 08/10/27 è«æ ã®ç· ãåãçµãã£ããé å¼µã£ãèªåã¸ã®ãè¤ç¾ï¼ç¬ï¼ã§ããã¨ããã¨ãããããæéãã¨ããã¼ï¼ â¦â¦ã¿ãããªãã¨ãæã£ã¦ããã¯ããªã®ã«ãããæåºãçµããã¨æ°ãæãã¦ä½ä¸ã¤ããæ°ãã§ãªãåé¡ã å°ã£ãå°ã£ãã ãã¤ãã« ãããã人ããããã¦ãä»ã®ãã¡ã« ããã¤ãã¡ã¢âãã«ãã¬ã³ãæ°è£ ç é¢ç½ããã¿ããªè²·ãããï¼ ãªã©ã¨æ¸ãã¦ã¿ãã èªåã®ãã³ã¬ã®è¶£å³ã¯ããã¨å¹³å¡ã ã¨æã£ã¦ã¦ã æµè¡ã£ã¦ããã³ã¬ã¯å¤§æµå¥½ãã ãèªåã®å¥½ããªã®ã¯ã ãããæµè¡ã£ã¦ããã ãªã®ã«ãªãã ãè¤éãããä½åã ãã¯å¯ä¸ã®ä¾å¤ã§ãã¨ã£ã¦ãä¸æè°ã§ãªããªãã 100åãããã¢ãã¡åããã¦ã¦ç¶ãã¹ãã ã¨æãã ä½åãæ¸ãã¦ã¾ããã¨ã«ããæçµè©±ã好ãã§ã ããã¾ã§ã®ã·ããªãªãä¸æ°ã«éã¾ã£ã¦ä¸ã¤ä¸ã¤ã®ã»ãªããï¼åã®éã¿ãæã¤ããã«åæãã¦ããå¹å¼ãã ããã¯è¯ãã 17:12 08/10/24 ã¢ã«ã´ãªãºã
In event path calculation, it's expected that we'd have a lot of queries to check if given two tree scopes in the tree of trees are in ancestor/descendant relationships. In the current implementation (TreeScope::isOlderSiblingOrInclusiveAncestor), this query takes O(N), where N is the height of the tree of trees. That causes the entire calculation of event.path for each node, on which even.path wo
åç°ã§ããç¸å¤ãããä¹±æã¢ã«ã´ãªãºã ç´¹ä»ã¨ãããã¨ã§ãä»æ¥ã¯Bloom Filterã®è©±ããããã¨æãã¾ããä»ã¾ã§ã¨éãã®ã¯Bloom Filterã¯ããåé¡ã解ãã¢ã«ã´ãªãºã ã§ã¯ãªããã¼ã¿æ§é ã§ããã¨ãããã¨ã§ãããã¼ã¿æ§é ã«ä¹±æ°ãå°å ¥ããã¨ã©ããããã¨ãåºæ¥ãããã«ãªããè¦ã¦ã¿ã¾ãããã
Lisperã®äººãªãã¿ããªç¥ã£ã¦ã竹å é¢æ°ï¼ãããã¾ããé¢æ°ï¼ã¨ããé¢æ°ãããã¾ãã å®ç¾©ã¨ãã¦ã¯ãããªæãã ãã®ã·ã³ãã«ãªå®ç¾©ããã¯æ³åãã¤ããªãã»ã©è¤éã§è¨å¤§ãªå帰å¼ã³åºãããããªãããã¨ã¦ãèå³æ·±ãé¢æ°ã§ãããã¨ãã°å¼æ°ã«Tarai(10,5,0)ãä¸ããã¨343,073åãå帰å¼ã³åºããããããã¾ãã ãã®é¢æ°å¼ã³åºãã®å¼æ°ãã©ã®ããã«å¤åãããç¥ãããã¦ããã°ã©ã ãæ¸ãã¦èª¿ã¹ã¦ã¿ãã¨ãããTarai(10,5,0)ã®å ´åã¯3ã¤ã®å¼æ°ããããã0ã10ï¼xã¯-1ã10ï¼ã®éã§å°ããã¤å¤åãããªãã§ã2ã¤ã®å¤ãåºå®ãã¦ã²ã¨ã¤ã®å¤ãä¸éãã¦ãããããªæåããã£ãããã¦ããªãã ãé³æ¥½ã®3åé³ã®ã³ã¼ãé²è¡ãæããããããªåãæ¹ã§ãã ãããããã¨ãªããã¨ãããã¨ã§å®éã«é³ã«ãã¦è´ãã¦ã¿ã¾ãããTaraié¢æ°ãå¼ã°ãããã³ã«å¼æ°ã®xãyãzãã0=ãã1=ãã¡ã2=ã½ãâ¦â¦ãã®ããã«é³ã«å²
Adler-32 is a checksum algorithm written by Mark Adler in 1995,[1] modifying Fletcher's checksum. Compared to a cyclic redundancy check of the same length, it trades reliability for speed. Adler-32 is more reliable than Fletcher-16, and slightly less reliable than Fletcher-32.[2] The Adler-32 checksum is part of the widely used zlib compression library, as both were developed by Mark Adler. A "rol
å æ¥ãTimSortã¨ããã½ã¼ãã¢ã«ã´ãªãºã ã話é¡ã«ãªãã¾ãããTimSortã¯ãé«éãªå®å®ã½ã¼ãã§ãPython(>=2.3)ãJava SE 7ãããã³Androidã§ã®æ¨æºã½ã¼ãã¢ã«ã´ãªãºã ã¨ãã¦æ¡ç¨ããã¦ããããã§ãã C++ã®std::sort()ãããé«éã§ããã¨ãããã³ããã¼ã¯çµæ1ã話é¡ã«ãªã(å¾ã«ãã³ããã¼ã¯ã®èª¤ãã¨å¤æ)ãç§ãããã§åå¨ãç¥ãã¾ãããå®éã®ã¨ãããã©ã³ãã ãªãã¼ã¿ã«å¯¾ãã¦ã¯ã¯ã¤ãã¯ã½ã¼ã(IntroSort)ã»ã©éããªãããã§ãããã½ã¼ãã¨ããã·ã³ãã«ãªã¿ã¹ã¯ã®ã¢ã«ã´ãªãºã ãä»ããªãæ¹è¯ããç¶ãã¦ãã¦ããªããã¤äººã ã®é¢å¿ãå¼ãã¨ããã®ã¯èå³æ·±ããã®ã§ãã ããããªããããªãªã¸ãã«ã®TimSortã®ã³ã¼ãã¯è¥å¹²è¤éã§ãå®éã®ã¨ããã©ãããã¢ã«ã´ãªãºã ãªã®ããããã¥ããã¨ãããããã¨æãã¾ããããã§ä»åã¯TimSortã®ã¢ã«ã´ãªãºã ãã§ããã ããããããã解
<追è¨>ãã³ããã¼ã¯ããã°ã©ã ã«èª¤ããããã¾ãããã½ã¼ãæ¸ã®ã·ã¼ã±ã³ã¹ã«å¯¾ãã¦ã½ã¼ããæãã¦ãã¾ããããææãããã¨ããããã¾ãï¼akæ° ãããªå¤¢ã®ãããªã½ã¼ãã¢ã«ã´ãªãºã ãããã®ãã¨ããã¨ãããããããã§ãããããtim sortã¨å¼ã°ããã¢ã«ã´ãªãºã ã§ãã ç»æçï¼ï¼ï¼ãªã½ã¼ãã¢ã«ã´ãªãºã ãSleep Sortãï¼æ¿ç¸®éå ãªã¬ã³ã¸ãã¥ã¼ã¹ï½gihyo.jp ⦠æè¡è©è«ç¤¾ ãã®ãããã§æ¾ã£ã¦ãããã¿ã§ããã merge sortãæ¹è¯ããã¢ã«ã´ãªãºã ã§ãå®å®*1ãã¦ããããããå®è¡é度ã«ãåªãã¦ããã¨ããã¢ã«ã´ãªãºã ã®æ§è½ã®è©ä¾¡ã¯æ¸ãã§ããããããCPythonãJDK7ã«ã¯æ¢ã«å°å ¥æ¸ã¿ã®ããã§ããã ãªãã°å½ç¶Perlã®ã½ã¼ããâ¦ã¨èããããã§ãããã¾ãè©ä¾¡ã®ããã«Javaã®ã½ã¼ã¹ãC++ã«ãã®ã¾ã¾ç§»æ¤ãã¦ã¿ã¾ããããããããï¼ãã¡ãããã¹ãæ¸ï¼ï¼ https://github.co
2. æ¥æ¬èªè©ä¾¡æ¥µæ§è¾æ¸ï¼åè©ç·¨ï¼ è©ä¾¡æ¥µæ§ãæã¤ï¼è¤åï¼åè©ï¼ç´8å5ç¾è¡¨ç¾ã«å¯¾ãã¦è©ä¾¡æ¥µæ§æ å ±ãä»ä¸ããï¼äººæã«ãããã§ãã¯æ¸ã¿ã®ãã¼ã¿ï¼åè©ã®è©ä¾¡æ¥µæ§ã¯æ¦ã以ä¸ã®åºæºã«å¾ãï¼æ±å±±, 2008ï¼ï¼ ãã§ããã»ã«ãªãï¼è©ä¾¡ã»ææ ï¼ä¸»è¦³ ãââããã§ããã»ãã«ãªãããã¨ã¯ï¼ââãP/Nã¨è©ä¾¡ãã¦ãããï¼ ãã¸ãã£ãï¼èª å®ï¼å®å¯§ï¼è¦ªåï¼ä¸ç«ï¼åæï¼è±éï¼ç¬¬ä¸äººè ï¼å¹¸ã ãã¬ãã£ãï¼å¼±æ°ï¼é¬± ãã§ããã»ã«ãªãï¼ç¶æ ï¼å®¢è¦³ ããï¼ã¨ããç¶æ ï¼ã«ãªãããã¨ã¯è¯ããã¨ãæªããã¨ãï¼ ãã¸ãã£ãï¼ ãã¬ãã£ãï¼ã¬ã³ ããï¼è©ä¾¡ã»ææ ï¼ä¸»è¦³ ããããã¯è¯ããæªããï¼ ãã¸ãã£ãï¼ç¾ãã ãã¬ãã£ãï¼å¼±ã ãããï¼ææ ï¼ä¸»è¦³ ãããããã¯è¯ãææ ãï¼æªãææ ãï¼ ãã¸ãã£ãï¼æå ãã¬ãã£ãï¼å¤±æ ãããï¼åºæ¥äºï¼ ããããããã¨ã¯å¬ãããã¨ãå«ãªãã¨ãï¼ ãã¸ãã£ãï¼
å è«æ âThe Learning Behind Gmail Priority Inboxâ, Douglas Aberdeen, Ondrey Pacovsky, Andrew Slater, LCCC : NIPS 2010 Workshop on Learning on Cores, Clusters and Clouds. http://research.google.com/pubs/archive/36955.pdf Gmail Priority Inboxã«ã¯PAãå©ç¨ããã¦ããã¨è©±é¡ã«ãªã£ã¦ããã®ã§ï¼èªãã§ã¿ã¾ããï¼ ç°¡åã«ã¾ã¨ã PA + transfer learning + logistic model ã©ã³ãã³ã°å¦ç¿ã§ã¯ï¼thresholdãé常ã«éè¦ãªåããæ㤠Gmail Priority Inboxã¯ããªãã®ã¡ã¼ã«å¦çã®æéã6%ç縮ãã¦ããã¾ã 1.The
以åããæ°ã«ãªã£ã¦ããæ¸ç±ãThe Burrows-Wheeler Transform Data Compression, Suffix Arrays, and Pattern matchingããèªãæ©ä¼ãå¾ããã¨ãã§ããããããªãã«é«é¡ãªæ¬ã ã£ãã®ã§è³¼å ¥ãèºèºã£ã¦ããã®ã ãã©ãããã¯èªåç¨ã«è³¼å ¥ãã¦ããããããã¨ãããããã®è¯æ¸ã ã£ãã®ã§ç´¹ä»ãã¦ããã æ¬æ¸ã¯ã¿ã¤ãã«ã®ã¨ããBWT(Burrows-Wheelerå¤æ)ã«é¢ããæ¸ç±ããµãã¿ã¤ãã«ã«ããããã«ãã¼ã¿å§ç¸®ãSuffixArrayã«ããå ¨ææ¤ç´¢ã«ã¤ãã¦ãå å®ããå 容ã«ãªã£ã¦ãããæå¾ã®Pattern matchingã¯ããã¹ãããæ¤ç´¢ãã¼ã¨exactã«ãããããããããã¯é¡ä¼¼ããç®æãåãåºãããã¨ãã話ã2008å¹´ã®æ¬ãªã®ã§æ¯è¼çæ°ãã話é¡ãæ±ã£ã¦ãã¦æºè¶³åº¦ãé«ãã ã¾ãæ¬æ¸ã®ç¹è²ã¯å§ç¸®ãããã§å§ã¾ããããããå ¨ææ¤ç´¢å¯è½ãª
大éã®ãã¼ã¿ãããä½ãæçãªæ å ±ãæ±ããåé¡ã®å¤ãã¯æé©ååé¡ã解ããã¨ã«å¸°çããã¾ãï¼ æé©ååé¡ã¨ã¯ä¸ããããé¢æ°fã®å¤ãæå°ï¼æ大ï¼ã«ãããããªå¤æ°xãæ¢ãã¨ãã£ãåé¡ã§ãã ä¾ãã°ãæ©æ¢°å¦ç¿ï¼ãããå©ç¨ããèªç¶è¨èªå¦çãæ å ±æ¤ç´¢ãªã©ï¼ãç»åå¦çãAI(ããããã®çµè·¯å¶å¾¡ï¼ã ãªã©å¤ãã®åéã§æé©ååé¡ã¯ç»å ´ãã¾ãã ãã®ä¸ã§ããªã³ã©ã¤ã³æé©åï¼æ©æ¢°å¦ç¿ã®æèã§ããã°ãªã³ã©ã¤ã³å¦ç¿ï¼ã¨å¼ã°ããæé©åææ³ã¯ å®ç¨æ§ã®é«ãã¨å®è£ ã®ããããããå¤ãå©ç¨ãããããã«ãªã£ã¦ãã¾ããã ãã®ãªã³ã©ã¤ã³æé©åã¯è¿å¹´Regretï¼å¾æï¼æå°åã¨ããã²ã¼ã çè«ãªã©ã§ä½¿ããã¦ããæ çµã¿ã§ 解æããããã¨ãå¤ããªã£ã¦ãã¾ããã ä»åã¯ãã®Regretæå°åã«ã¤ãã¦ç°¡åã«è§£èª¬ãã¦ã¿ããã¨æãã¾ãã ï¼æ©æ¢°å¦ç¿ã詳ãã人åãã«è£è¶³ããã¨ãVC次å ãªã©ä»ã®æ©æ¢°å¦ç¿ã解æããææ³ã¨æ¯ã¹ã¦Regretæé©åã®é¢ç½ã
Get it The latest stable release is Eigen 3.4.0. Get it here: tar.bz2, tar.gz, zip. Changelog. The latest 3.3 release is Eigen 3.3.9. Get it here: tar.bz2, tar.gz, zip. Changelog. The latest 3.2 release is Eigen 3.2.10. Get it here: tar.bz2, tar.gz, zip. Changelog. The unstable source code from the master is there: tar.bz2, tar.gz, zip. To check out the Eigen repository using Git, do: git clone ht
æå¼·æéã¢ã«ã´ãªãºãã¼é¤æè¬åº§ï¼ ãã®ã¢ã«ã´ãªãºã ã貪欲ã«ã¤ãââ貪欲æ³ã®ã¹ã¹ã¡ ã¢ã«ã´ãªãºã ã®ä¸çã«ããã¦ã欲張ãã§ãããã¨ã¯ã¨ãã«æå©ã«åããã¨ãããã¾ããä»åã¯ã貪欲æ³ã¨å¼ã°ããã¢ã«ã´ãªãºã ãç´¹ä»ããªããããã¼ããªåé¡ã«ææ¦ãã¦ã¿ã¾ãããããã®ã¢ã«ã´ãªãºã ã使ãããã©ããã®è¦æ¥µããã§ããããã«ãªãã°ãããªãã®è«ççæèåã¯ããªãã®ã¬ãã«ãªã®ã§ããï¼2010/9/4ï¼ æå¼·æéã¢ã«ã´ãªãºãã¼é¤æè¬åº§ï¼ ç ã¿ã¤ãã«ãªããåçè¨ç»æ³ãããã®æ·±æ·µã«è¿«ã æ°åã«ããã£ã¦åçè¨ç»æ³ã»ã¡ã¢åå帰ã«ã¤ãã¦è§£èª¬ãã¦ãã¾ããããä»åã¯å®è·µç·¨ã¨ãã¦ãããããµãã¯åé¡ã¸ã®ææ¦ã足ãããã«ããã®é·æã¨çæã®ç´¹ä»ãç解度ãã§ãã¯ã·ã¼ããªã©ãç¨æãã¾ãããç¹ã«ãåçè¨ç»æ³ã«ã¤ãã¦æ·±ãæãä¸ããçãããåçè¨ç»æ³ãã¹ã¿ã¼ã®éã«ãæ¡å ãã¾ããï¼2010/5/15ï¼ æå¼·æéã¢ã«ã´ãªãºãã¼é¤æè¬åº§ï¼ ã¢ã«ã´ãªãºãã¼ã®ç»
Topcoder is a crowdsourcing marketplace that connects businesses with hard-to-find expertise. The Topcoder Community includes more than one million of the worldâs top designers, developers, data scientists, and algorithmists. Global enterprises and startups alike use Topcoder to accelerate innovation, solve challenging problems, and tap into specialized skills on demand.
1. ããã¯ããªã¼GCLOCKãã¼ã¸ç½®æ ã¢ã«ã´ãªãºã æ²¹äºèª ï¼å®®å´ç´ï¼æ¤æä¿äº®ï¼å è¤åä¸ å¥è¯å 端ç§å¦æè¡å¤§å¦é¢å¤§å¦ D3 æ¥æ¬å¦è¡æ¯èä¼ç¹å¥ç ç©¶å¡ DC2 WebDB forum 2008 2. ç 究èæ¯ ï® CPUãåæå®è¡ã§ããã¹ã¬ããæ°ãå¢å e.g., - Niagara T2 â 8 cores x 8 SMT = 64 processors - Azul Vega2 â 48 cores x 16 chips = 768 processors ï® ãã¼ã¿ãã¼ã¹ã®CPUã¹ã±ã¼ã©ããªãã£ã®åé¡ãé¡èå 代表çãªãªã¼ãã³ã½ã¼ã¹RDBMSã®CPUã¹ã±ã¼ã©ããªãã£ã®ä¸é [1][2] Berkely DB â 4ã¹ã¬ãã MySQL 5.0.30以é â 8ã¹ã¬ãã PostgreSQL 8.2以é â 16ã¹ã¬ãã [1] Ryan Johnson, Ippokratis Pand
ãªãªã¼ã¹ãé害æ å ±ãªã©ã®ãµã¼ãã¹ã®ãç¥ãã
ææ°ã®äººæ°ã¨ã³ããªã¼ã®é ä¿¡
å¦çãå®è¡ä¸ã§ã
j次ã®ããã¯ãã¼ã¯
kåã®ããã¯ãã¼ã¯
lãã¨ã§èªã
eã³ã¡ã³ãä¸è¦§ãéã
oãã¼ã¸ãéã
{{#tags}}- {{label}}
{{/tags}}