You signed in with another tab or window. Reload to refresh your session. You signed out in another tab or window. Reload to refresh your session. You switched accounts on another tab or window. Reload to refresh your session. Dismiss alert
This paper introduces a novel approach to the task of data association within the context of pedestrian tracking, by introducing a two-stage learning scheme to match pairs of detections. First, a Siamese convolutional neural network (CNN) is trained to learn descriptors encoding local spatio-temporal structures between the two input image patches, aggregating pixel values and optical flow informat
State-of-the-art methods for zero-shot visual recognition formulate learning as a joint embedding problem of images and side information. In these formulations the current best complement to visual features are attributes: manually encoded vectors describing shared characteristics among categories. Despite good performance, attributes have limitations: (1) finer-grained recognition requires commen
We propose a stochastic variance reduced optimization algorithm for solving sparse learning problems with cardinality constraints. Sufficient conditions are provided, under which the proposed algorithm enjoys strong linear convergence guarantees and optimal estimation accuracy in high dimensions. We further extend the proposed algorithm to an asynchronous parallel variant with a near linear speedu
Recently ConvNets or convolutional neural networks (CNN) have come up as state-of-the-art classification and detection algorithms, achieving near-human performance in visual detection. However, ConvNet algorithms are typically very computation and memory intensive. In order to be able to embed ConvNet-based classification into wearable platforms and embedded systems such as smartphones or ubiquito
The convergence of Stochastic Gradient Descent (SGD) using convex loss functions has been widely studied. However, vanilla SGD methods using convex losses cannot perform well with noisy labels, which adversely affect the update of the primal variable in SGD methods. Unfortunately, noisy labels are ubiquitous in real world applications such as crowdsourcing. To handle noisy labels, in this paper, w
ãªãªã¼ã¹ãé害æ å ±ãªã©ã®ãµã¼ãã¹ã®ãç¥ãã
ææ°ã®äººæ°ã¨ã³ããªã¼ã®é ä¿¡
å¦çãå®è¡ä¸ã§ã
j次ã®ããã¯ãã¼ã¯
kåã®ããã¯ãã¼ã¯
lãã¨ã§èªã
eã³ã¡ã³ãä¸è¦§ãéã
oãã¼ã¸ãéã
{{#tags}}- {{label}}
{{/tags}}