Using Brendan McKay's published data and plantri software, Stuart E Anderson updated our modest original table. Unlike the rest of the Numericana site, the table on this page is best viewed with a larger screen (1024 pixels or wider). For our general comments, see the original page, which may be viewed at lower resolution (and may also be more suitable for printing).
ã¨ã¯ã»ã«ã§ä½ã貯ãããç´ã®å¸¯ã§ç·¨ãã¿ã¤ããã®å¤é¢ä½ã®å±éå³ï¼åç´ï¼ã®ä¸ããããå¯æãæ毬ã®å¤é¢ä½ï½ããããã¦è±å½¢132é¢ä½(æã家ã§ã®å¼ã³æ¹ã§ã)ãããç´¹ä»ãã¾ãã å¯æãæ毬ã®å¤é¢ä½ï½ããããã¦è±å½¢132é¢ä½(æã家ã§ã®å¼ã³æ¹ã§ã) â»åºæ¬ã®å±éå³ï¼åç´ï¼12å(æ¬)ã®ãã¡4å(æ¬)ã®é ç½®ãå¤ãã¦ç·¨ã¿ä¸ãããã® ï¼çªå·ã¯ç§ãçµã¿åããå±éå³ãä½ãæã®ç®å°ã§ãï¼ ï¼çªå·ã¯ç§ãçµã¿åããå±éå³ãä½ãæã®ç®å°ã§ãï¼ è±å½¢ã«å½©ãããå¤é¢ä½ã«ã¯ä¸æè°ãªé åããããã¨ã¦ãå¿ãåããã¾ããä»ã¾ã§ã«è±å½¢å¤é¢ä½ã¨ãã¦ãå¹³è¡ï¼é¢ä½ãè±å½¢åäºé¢ä½ãè±å½¢åäºé¢ä½ç¬¬2種ãè±å½¢äºåé¢ä½ãè±å½¢ä¸åé¢ä½ãè±å½¢å åé¢ä½ãè±å½¢ä¹åé¢ä½ãããä¸ã¤ã®è±å½¢ä¹åé¢ä½ãç·¨ã¿ä¸ãã¦ã¿ã¾ããã ããä¸ã¤ã®è±å½¢ä¹åé¢ä½ãç·¨ã¿ä¸ãã¦ã¿ã¦ã次ã¯ããã«é¢æ°ã®å¤ããã®ã¨æããè±å½¢132é¢ä½ã«ææ¦ãã¦ã¿ã¾ããã è±å½¢90é¢ä½ã¯ã2種é¡ã®è±å½¢90æï¼
Introduction A polytope of n dimensions is the convex hull of a finite collection of points in an n-dimensional vector space Rn that is non-degenerate in the sense that it does not lie in some subspace of n-1 dimensions. "Convex" here means, roughly, that the shape bulges out. "Hull" means that the actual corners, or vertices, of the figure are among the original set of points. In two dimensions,
ãªãªã¼ã¹ãé害æ å ±ãªã©ã®ãµã¼ãã¹ã®ãç¥ãã
ææ°ã®äººæ°ã¨ã³ããªã¼ã®é ä¿¡
å¦çãå®è¡ä¸ã§ã
j次ã®ããã¯ãã¼ã¯
kåã®ããã¯ãã¼ã¯
lãã¨ã§èªã
eã³ã¡ã³ãä¸è¦§ãéã
oãã¼ã¸ãéã
{{#tags}}- {{label}}
{{/tags}}