XGBoostã試ãã ãã®ææ³ã¯ã¾ã ç解ãã¦ããªããã©ã試ããããã¯ã§ããããã¡ããã¨éãã§ã¿ãã èªåã¯æåããæ°å¼è¿½ã£ã¦ã©ããªææ³ãªã®ãç解ã§ããã»ã©ã«ã¯ã»ã©é ãããã 試ãã¦ãããã¡ã«å°ããã¤æ°ã«ãªãã¨ãããåºããã¨ãæå¾ ãã¤ã¤ãã£ã¦ã¿ãã XGBoostã¨ã¯ XGBã¯gradient tree boostingã®å®è£ ã®ã²ã¨ã¤ã(ã¨ãããã¨ã¯ãããèªä½ãã¢ã«ã´ãªãºã ã¨ããããã§ã¯ãªãã®ãã) ãã åã«ã¢ã«ã´ãªãºã ãå®è£ ããã¦ããã ãã§ã¯ãªãããããããªå·¥å¤«ãããã¦ãã¦ãããããã é©å½ãªãã¼ã¿ãä½ã£ã¦ã2ã¯ã©ã¹èå¥åé¡ã試ãã set.seed(3) N <- 1000 K <- 30 betas <- rnorm(K, 0, 2) X <- matrix(rnorm(N*K, 0, 1), nrow = N, ncol = K) noise <- rnorm(N, 0, 0.5)
{{#tags}}- {{label}}
{{/tags}}