
é»éã®ãäºæ¥ã°ãã¼ã¹å®è·µã¦ã§ããã¼ãã§ã¯ãæ¥ã é²åãããã¸ãã¹ã®ææ°ã®ç¥è¦ãçºä¿¡ãã¦ãã¾ããæ¬é£è¼ã§ã¯ãäºæ¥ã°ãã¼ã¹å®è·µã¦ã§ããã¼2022 by é»éPeople Driven Marketingããã注ç®ã®ã»ãã·ã§ã³ãããã¯ã¢ããï¼ç»å£è ã«æ¹ãã¦ã話ã伺ãã¾ãã ä»åã®ãã¼ãã¯ãä»æ³¨ç®ãæµ´ã³ã¤ã¤ãããMMMãï¼ãã¼ã±ãã£ã³ã°ã»ããã¯ã¹ã»ã¢ããªã³ã°ï¼ããçµ±è¨æè¡ããç¨ãã¦ããã¾ãã¾ãªãã¼ã±ãã£ã³ã°æ½çã®å¹æãå¯è¦åããå°æ¥ã®ã¡ãã£ã¢æ½çã®äºç®é åãæé©åããã¢ããã¼ãã§ãã ä»åã¯é»éã°ã«ã¼ãã®ç¥è¦ãè¸ã¾ãããå®è·µçMMMå°å ¥ã®ã¢ããã¼ãã®è§£èª¬ã§ããçµ±è¨ãããã§ãã·ã§ãã«ã§ããç°ä¸æ ç¥æ°ãMMMã«ãã¼ã±ãã£ã³ã°ã®ããã¨ãã¦åãåã£ã¦ããç¦ç°åå²æ°ãã°ãã¼ãã«ã§è±å¯ãªMMMå®ç¸¾ãæã¡ãç¾å¨ã¯ãã¼ã¿æ´»ç¨ã®ã½ãªã¥ã¼ã·ã§ã³ã«ã³ããã¼ã§ããé»éã¯ãã¹ãã¬ã¤ã³ã§ä»£è¡¨åç· å½¹ãåããå·éå¿ å©æ°ã¨ãããé»é
以åãAds carryover & shape effectsä»ãã®Media Mix Modelingãã¨ããè¨äºã§åãä¸ãããã¤ã¸ã¢ã³MMMã®technical report (Jin et al., 2017)ã§ãããå½æRStanã§å®è£ ããã¦ãããã®ã4å¹´ã®æãçµã¦æ代ã®è¶¨å¢ã«æ²¿ãå½¢ã§Pythonãã¼ã¹ã®OSSã¨ãã¦ãªãªã¼ã¹ããã¦ãã¾ãã ãããLightweight MMM (LMMM)ã§ãããã¤ã¸ã¢ã³ã¢ããªã³ã°é¨åã¯NumPyroã«ããMCMCãµã³ãã©ã¼ã§å®è£ ããã¦ãããããã«ã¯ã¢ãã³ãªMMMãã¬ã¼ã ã¯ã¼ã¯ã«ããã¦æ¨æºçã¨ãããäºç®é åã®æé©åã«ã¼ãã³ãå®è£ ããã¦ãã¾ããå ¨ä½çãªä½¿ãåæã¨ãã¦ã¯ãã¾ã éçºéä¸ã®é¨åãããã®ã§æã çãã¨ããã«æãå±ããªãæããããã®ã®ãæ¦ãRStanã§å®è£ ãããã®ã¨ä¼¼ããããªæãã«ä»ä¸ãã£ã¦ããã¨ããå°è±¡ã§ãã ã¨ãããã¨ã§ãLMMMãã©ããªæ
Marketing mix modeling (MMM) is a process used to quantify the effects of different advertising mediums, i.e. media. It is also used to optimize the spend budget over these different mediums. The popular method of choice is multiple regression analysis. The model also takes into account other variables such as pricing, distribution points, and competitor tactics. This article will explain the math
RobynRobyn is an experimental, AI/ML-powered and open sourced Marketing Mix Modeling (MMM) package from Meta Marketing Science. A New Generation of Marketing Mix ModelingOur mission is to democratise modeling knowledge, inspire the industry through innovation, reduce human bias in the modeling process & build a strong open source marketing science community. Automated hyperparameter optimization w
What is Robyn?: Robyn is an experimental, semi-automated and open-sourced Marketing Mix Modeling (MMM) package from Meta Marketing Science. It uses various machine learning techniques (Ridge regression, multi-objective evolutionary algorithm for hyperparameter optimization, time-series decomposition for trend & season, gradient-based optimization for budget allocation, clustering, etc.) to define
ãã®è¨äºã§ã¯ãFacebookExperimentalã®Robynã®æåã®æ¦è¦ã説æãã¾ããFacebookã®ãã¼ã±ãã£ã³ã°ãµã¤ã¨ã³ã¹ãã¼ã ã¯ãã§ã«åªããã¯ã¤ãã¯ã¹ã¿ã¼ãã¬ã¤ãã¨é常ã«è©³ç´°ãªãã¼ã¸ãä½æãã¦ããã®ã§ãè¨äºãçãç°¡æ½ã«ä¿ã¤ããã«ãã¦ãã¾ãã詳細ãªèª¬æã®ããã«ãããªãã¯ããå¤ãè¦ã¤ãããã¨ãã§ããããã§æ å ±ãã tl; dr Facebook Experimentalã®Robynã¯ãèªååããããã¼ã±ãã£ã³ã°ããã¯ã¹ã¢ããªã³ã°ï¼MMMï¼ã³ã¼ãã§ãããç¾å¨ãã¼ã¿çã§ãã ããã¯ãç¹å¾´å¤æã®ããã®2ã¤ã®ã¢ãã¹ããã¯ï¼å¹¾ä½å¦çããã³ã¯ã¤ãã«ï¼ããã³Sæ²ç·å¤æï¼åç©«éæ¸ï¼ææ³ãæä¾ãã¾ãã æç³»åæ©è½ãèæ ®ã«å ¥ããããã«ãRobynã¯FacebookProphetãå©ç¨ãã¾ãã Facebookã®Nevergradå¾é ã®ãªãæé©åãã©ãããã©ã¼ã ãå©ç¨ãã¦ãä¸é£ã®ãã¬ã¼ãæé©ã¢ãã«ã½ãª
ããã¯åãªãåå¿é²ã§ãããè«æã¨ãµã³ãã«ã³ã¼ãèªã¿ãªãã試ãã¾ããã以å¤ã«ä½ãå 容ã®ãªãè¨äºã§ãã®ã§ã注æãã ãããç¹ã«åã ã®å¼ã®å¤æ°ã®èª¬æã«ã¤ãã¦ã¯å人çãªåå¿é²ãã大åã端æãã¾ãã®ã§ãä»®ã«èå³ãæãããæ¹ã¯é©å®è«æã®æ¬æããåç §ä¸ãããèªãã è«æã¯ãã¡ãã Bayesian Methods for Media Mix Modeling with Carryover and Shape Effects â Google Research ãªãããã®è¨äºãæ¸ãã«å½ãã£ã¦id:ushi-goroshiããã®ãã¡ãã®ããã°è¨äºã·ãªã¼ãºãåèã«ããã¦ããã ãã¾ãããåãããããã¦å¤§å¤å©ããã¾ãããæé£ããããã¾ãã ããã§ã¯é©å½ã«ãã£ã¦ããã¾ãã Ads carryover & shape effectsã«ã¤ã㦠ããããMedia Mix Modeling (MMM)ã®èã¯ãåºåãæä¸ããã
8.1 æ¦è¦ å帰åæã¨ããçµ±è¨ææ³ã¯ãç¬ç«å¤æ°ï¼èª¬æå¤æ°ã»äºæ¸¬å¤æ°ï¼ã¨å¾å±å¤æ°ï¼è¢«èª¬æå¤æ°ã»ç®çå¤æ°ã»å¿çå¤æ°ï¼ã®é¢ä¿ãè¨è¿°ããã®ã«ä½¿ããã¾ãã å帰åæã使ããã¨ã§ã ç®çå¤æ°ã¨é¢é£ã®ãã説æå¤æ°ãç¹å®ãããã å¤æ°éã®é¢ä¿å¼ãè¨è¿°ãããã 説æå¤æ°ããç®çå¤æ°ãäºæ¸¬ããã ãããã¨ãã§ãã¾ãã
ãã©ãããã©ã¼ã ã®æ¦è¦ AI Platform çæ AIããã³äºæ¸¬ AIã®ãã©ãããã©ã¼ã ãã£ã¨è©³ãã ããã¥ã¡ã³ã æ°æ©è½ ãã°ã¤ã³ ç¡æã§å§ãã éç¨ èªä¿¡ãæã£ã¦AIãæ¡å¼µããæ¯é¡ã®ãªãã¨ã³ã¿ã¼ãã©ã¤ãºã»ã¢ãã¿ãªã³ã°ã¨ã³ã³ããã¼ã«ã§ãã¸ãã¹ä¾¡å¤ãä¿é² ãããã¤ã¨å®è¡ åå¦ç¿ã¨æé©å ç£è¦ã¨ä»å ¥ ã¬ããã³ã¹ AIã®ç°å¢ããã¼ã ãããã³ã¯ã¼ã¯ããã¼ãçµ±åãã大è¦æ¨¡ãªç¯å²ã§ã®å®å ¨ãªå¯è¦æ§ã¨ç£è¦ãå®ç¾ ã¬ã¸ã¹ããªã¨ç®¡ç ç£æ»ã¨æ¿èª ã³ã³ãã©ã¤ã¢ã³ã¹ããã¥ã¡ã³ãçæ æ§ç¯ ãã¼ãºã®é²åã«åããã¦èªç±ã«é©å¿ã§ãããªã¼ãã³ãªAIã¨ã³ã·ã¹ãã ã§ãè¿ éãªã¤ããã¼ã·ã§ã³ãå®ç¾ åæã¨å¤æ å¦ç¿ã¨ãã¥ã¼ãã³ã° çµç«ã¦ã¨æ¯è¼ ãã©ãããã©ã¼ã çµ±å ã¤ã³ãã©ã¹ãã©ã¯ãã£ã¼ã¸ã®ããã㤠ã½ãªã¥ã¼ã·ã§ã³ æ¥çã㨠ãã«ã¹ã±ã¢ 製é å°å£²æ¥ éèãµã¼ãã¹ ææã㨠ã¦ã¼ã¹ã±ã¼ã¹ã®ã©ã¤ãã©ãªã¼ ã客æ§äºä¾ Dat
èæ¯ ãã¤ããããã§ãããMarketing Mix Modelingï¼MMMï¼ã®è©±é¡ã§ãã å æ¥ããããªé¢ç½ãè«æãè¦ã¤ãã¾ããã Googleã®Researcherã«ããMMMã®è«æï¼å½¼ãã¯Media Mix Modelingã¨å¼ãã§ãã¾ãï¼ãªã®ã§ããããã«ã®å¼ãç¨ãã¦åºåã®Shapeå¹æï¼Carvetureå¹æï¼ãæ¨å®ããã¨ãããã¨ããã£ã¦ãã¾ããããã§Shapeå¹æã»carvetureå¹æã¨ã¯ãã¡ãã£ã¢ã®é²åºéã«å¯¾ããç®çå¤æ°ã®åå¿ã示ãæ²ç·ãæãããã§ããã«ã®å¼ã¨ã¯ï¼ $$ H(x; K, S) = \frac{1}{1 + (\frac{x}{K})^{-S}} $$ ã§ããã$K > 0$ã$S > 0$ã¨ãªããã©ã¡ã¼ã¿ã«ãã£ã¦LogãSigmoidã®å½¢ç¶ã表ç¾ãããã¨ãã§ããããã§ãã ãã«ã®å¼ã«ãã£ã¦xãã©ã®ãããªå½¢ç¶ã¨ãªãããå®éã«ç¢ºèªãã¦ã¿ã¾ããããã¾ãã¯ãã«ã®å¼ã以
ãªãªã¼ã¹ãé害æ å ±ãªã©ã®ãµã¼ãã¹ã®ãç¥ãã
ææ°ã®äººæ°ã¨ã³ããªã¼ã®é ä¿¡
å¦çãå®è¡ä¸ã§ã
j次ã®ããã¯ãã¼ã¯
kåã®ããã¯ãã¼ã¯
lãã¨ã§èªã
eã³ã¡ã³ãä¸è¦§ãéã
oãã¼ã¸ãéã
{{#tags}}- {{label}}
{{/tags}}