ããã«ã¡ã¯ãç 究éçºé¨ã®éè¦ (@nersonu) ã§ãã ããããè±ç²çã®å£ç¯ã§ãããé±1ã§ããåºç¤¾ããªãç§ã¯ããªãã¨ãå¼ãããã£ã¦æ°ã¶æãã®ãããã¨ããã§ãã ãã¦ãä»å㯠BERTopic ã¨ãã OSS ã«ã¤ãã¦ããã£ããã¨ããææ³ã®è§£èª¬ããã¤ã¤ãç°¡åã«ææ¸ã®ã¯ã©ã¹ã¿ãªã³ã°ã試ããã¨æãã¾ãã github.com ç®æ¬¡ ç®æ¬¡ BERTopic ã¨ã¯ ææ¸ã®åã込㿠ææ¸ã®ã¯ã©ã¹ã¿ãªã³ã° ãããã¯è¡¨ç¾ ææ³ã®æ¦è¦ã¾ã¨ã BERTopic ã試ãã¦ã¿ã ã¤ã³ã¹ãã¼ã« ã¢ãã«ã®ãã¼ã ã¯ã©ã¹ã¿ãªã³ã°ã®å®è¡ çµæã®ç¢ºèª ãããã¯ãã¨ã®åèªã®éè¦åº¦ ãããã¯ãã¨ã®ææ¸ãçºãã¦ã¿ã 次å åæ¸ææ³ã»ã¯ã©ã¹ã¿ãªã³ã°ææ³ã®å¤æ´ 使ã£ã¦ã¿ã¦ã®ææ BERTopic ã¨ã¯ BERTopic ã¯ãããããããã¯ã¢ããªã³ã°ãè¡ãããã® OSS ã§ãã ãããã¯ã¢ãã«ã¯ãææ¸éåããããããã¯ãã¯ä½ãå«ã¾ã
é»éã®ãäºæ¥ã°ãã¼ã¹å®è·µã¦ã§ããã¼ãã§ã¯ãæ¥ã é²åãããã¸ãã¹ã®ææ°ã®ç¥è¦ãçºä¿¡ãã¦ãã¾ããæ¬é£è¼ã§ã¯ãäºæ¥ã°ãã¼ã¹å®è·µã¦ã§ããã¼2022 by é»éPeople Driven Marketingããã注ç®ã®ã»ãã·ã§ã³ãããã¯ã¢ããï¼ç»å£è ã«æ¹ãã¦ã話ã伺ãã¾ãã ä»åã®ãã¼ãã¯ãä»æ³¨ç®ãæµ´ã³ã¤ã¤ãããMMMãï¼ãã¼ã±ãã£ã³ã°ã»ããã¯ã¹ã»ã¢ããªã³ã°ï¼ããçµ±è¨æè¡ããç¨ãã¦ããã¾ãã¾ãªãã¼ã±ãã£ã³ã°æ½çã®å¹æãå¯è¦åããå°æ¥ã®ã¡ãã£ã¢æ½çã®äºç®é åãæé©åããã¢ããã¼ãã§ãã ä»åã¯é»éã°ã«ã¼ãã®ç¥è¦ãè¸ã¾ãããå®è·µçMMMå°å ¥ã®ã¢ããã¼ãã®è§£èª¬ã§ããçµ±è¨ãããã§ãã·ã§ãã«ã§ããç°ä¸æ ç¥æ°ãMMMã«ãã¼ã±ãã£ã³ã°ã®ããã¨ãã¦åãåã£ã¦ããç¦ç°åå²æ°ãã°ãã¼ãã«ã§è±å¯ãªMMMå®ç¸¾ãæã¡ãç¾å¨ã¯ãã¼ã¿æ´»ç¨ã®ã½ãªã¥ã¼ã·ã§ã³ã«ã³ããã¼ã§ããé»éã¯ãã¹ãã¬ã¤ã³ã§ä»£è¡¨åç· å½¹ãåããå·éå¿ å©æ°ã¨ãããé»é
以åãAds carryover & shape effectsä»ãã®Media Mix Modelingãã¨ããè¨äºã§åãä¸ãããã¤ã¸ã¢ã³MMMã®technical report (Jin et al., 2017)ã§ãããå½æRStanã§å®è£ ããã¦ãããã®ã4å¹´ã®æãçµã¦æ代ã®è¶¨å¢ã«æ²¿ãå½¢ã§Pythonãã¼ã¹ã®OSSã¨ãã¦ãªãªã¼ã¹ããã¦ãã¾ãã ãããLightweight MMM (LMMM)ã§ãããã¤ã¸ã¢ã³ã¢ããªã³ã°é¨åã¯NumPyroã«ããMCMCãµã³ãã©ã¼ã§å®è£ ããã¦ãããããã«ã¯ã¢ãã³ãªMMMãã¬ã¼ã ã¯ã¼ã¯ã«ããã¦æ¨æºçã¨ãããäºç®é åã®æé©åã«ã¼ãã³ãå®è£ ããã¦ãã¾ããå ¨ä½çãªä½¿ãåæã¨ãã¦ã¯ãã¾ã éçºéä¸ã®é¨åãããã®ã§æã çãã¨ããã«æãå±ããªãæããããã®ã®ãæ¦ãRStanã§å®è£ ãããã®ã¨ä¼¼ããããªæãã«ä»ä¸ãã£ã¦ããã¨ããå°è±¡ã§ãã ã¨ãããã¨ã§ãLMMMãã©ããªæ
ãã¸ãã¹ç³»ãã¼ã¿ãµã¤ã¨ã³ã¹ã®å¤ãã¯ãæç³»åãã¼ã¿ã§ãã Rã®TSstudioããã±ã¼ã¸ã使ãã¨ããµã¯ãã¨æç³»å解æã§ãã¾ãããTSstudioãã®ãTSãã¯Time Seriesï¼æç³»åï¼ã®ç¥ã§ãã Rã®TSstudioããã±ã¼ã¸ã«ã¯ãæç³»åãã¼ã¿ãåæããä¸ã§å¬ããæ©è½ãã¦ããçãã§ãã ä»åã¯ããæç³»åãã¼ã¿ãªãRã®TSstudioããã±ã¼ã¸ã§ãµã¯ãã¨åæãã¨ããã話ãããã¾ãã TSstudioã¨ã¯ï¼ Rã®TSstudioã«ã¯ããã£ãããã次ã®ãããªæ©è½ãããã¾ãã æç³»åãã¼ã¿ã®å¯è¦å æç³»åãã¼ã¿ã®åæ æç³»åã®äºæ¸¬ã¢ãã«æ§ç¯ ä¾ãã°ãç¾å¨ï¼2021å¹´3æ5æ¥ç¾å¨ï¼ã¯æ¬¡ã®ãããªæç³»åã¢ãã«ãä½ããã¨ãã§ãã¾ãã ARIMAã¢ãã«ï¼auto.arimaå«ãï¼ ETSï¼Error-Trend-Seasonality, Exponential smoothing state space
é»éãã¸ã¿ã«ã§ãã¼ã¿ãµã¤ã¨ã³ãã£ã¹ãããã¦ããä¸å¶ã§ãã ãã®è¨äºã§ã¯ãããã¾ã§ç´¹ä»ããLiNGAMã®æ´¾çå½¢ã§ããVAR-LiNGAMï¼Vector AutoRegression-LiNGAMï¼ã«ã¤ãã¦ç´¹ä»ãããã¨æãã¾ããããã¯é常ã®LiNGAMã«ãã¯ãã«èªå·±å帰ã¢ãã«(Vector AutoRegression Model: VAR Model)ã®èãæ¹ãåãå ¥ããæç³»åæ§ã®å æãèæ ®ããå ææ¢ç´¢ãè¡ããã®ã§ãã ä»åã®è¨äºã§ã¯åéã®é¢ä¿ããGoogle Colabã§ã®å®è£ ã¯å²æããå è«æ[1]ãåèã«ããªãã主ã«çè«çãªé¨åã®ç´¹ä»ãè¡ãã¾ãã å®å¼åVAR-LiNGAMã®å®å¼åã説æããåã«è«æã®å½¢å¼ã«å£ã£ã¦ã¾ãã¯LiNGAMã¨VARããããã®å®å¼åããããããã¾ããåå¥ã®èª¬æã«å ¥ãåã«å ¨ä½åã以ä¸ã«ç¤ºãã¾ãã LiNGAM LiNGAMã¨ã¯Linear Non-Gaussian A
è¿å¹´ãåºåæ½çã«ãããå¹ææ¤è¨¼ã®ãã¼ãºãé«ã¾ã£ã¦ãã¾ãããæ¬å½ã«ãã®åºåã¯å¹æãããã®ãï¼ãã¨ã·ãã¢ã«åãããããã«ãªãããã¼ã¿ãµã¤ã¨ã³ã¹ã®ã¢ããã¼ããç¨ããåæãå°å ¥ããä¼æ¥ãå¢ãã¦ãã¾ãã ãã®éã«åãããã®ã¯ããã¼ã¿ãµã¤ã¨ã³ã¹ã®ã質ãã§ããããç·»å¯ã§é«åº¦ãªå¹ææ¤è¨¼ãå®ç¾ããããã«ãã©ã®ãããªã¢ããã¼ããå¿ è¦ãªã®ããæ¬é£è¼ã§ã¯ã社å ã®ãã¼ã¿ãµã¤ã¨ã³ãã£ã¹ããç 究è ã¨å ±ã«çµ±è¨ãæ©æ¢°å¦ç¿ãç¨ããåæã»ã½ãªã¥ã¼ã·ã§ã³éçºã«æ³¨åãã¦ããé»éãã¼ã¿ã»ãã¯ããã¸ã¼ã»ã³ã¿ã¼ããåºåå¹ææ¤è¨¼ã«ããããã¼ã¿ãµã¤ã¨ã³ã¹ã®æ´»ç¨æ³ãç´¹ä»ãã¾ãã ååã¯é»éãé·å¹´ç 究ãéãã¦ãããå ææ¨è«ï¼â»1ï¼ãç¨ããåºåå¹ææ¤è¨¼ãã«ã¤ãã¦ãã¢ããã¤ã¶ã¼ãåããæ ¶æ義塾大å¦ã®ä¸æç¥ç¹ç 究å¡ã¨ãé»éã¯ãã¹ãã¬ã¤ã³ã®æ°¸ç°å¤§è²´æ°ãèªãåãã¾ãã â»1 å ææ¨è«ï¼çµ±è¨çãªã¢ããã¼ããç¨ãã¦æ½çãªã©ã®å¹æãæ¨å®ããææ³ã®ãã¨ã å ææ¨
ããã«ã¡ã¯ããªãã»ã³ã¹ã§ãã¼ã¿ãµã¤ã¨ã³ãã£ã¹ãããã¦ããååã§ããä»åã¯å¹³åå¦ç½®å¹æã®æ¨å®æ¹æ³ã«ã¤ãã¦ç´¹ä»ãã¾ããããå ·ä½çã«ã¯ãããã³ã°ãéã¿ä»ãã¨ãã£ãå ±å¤éã®ãã©ã³ã·ã³ã°ãå©ç¨ãã¦ãã¤ã¢ã¹ã®å°ããæ¨å®ãããæ¹æ³ã使ããè¤æ°å¾ãããæ¨å®çµæãçµãè¾¼ãã§ææ決å®ã«ä½¿ããçµè«ãå¾ãã¾ã§ã®æµããæ±ãã¾ãããµã³ãã«ãã¼ã¿ã使ã£ã¦å®éã«æ¨å®ãè¡ãçµæã解éããã¨ããã¾ã§è¡ãã¾ããã³ã¼ãã¯Rã§ããå®å ¨ã«ã³ã³ã»ã³ãµã¹ã®ã¨ããå ææ¨è«æ¹æ³ã»æé ã¯ããããåå¨ããªãã®ã§ãç¾æç¹ã§ããã®ã§ã¯ã¨èãã¦ããæ¹æ³ã®ç´¹ä»ã«ãªãã¾ãã ä»åç´¹ä»ããæ¹æ³ã®ãã¤ã³ãã¯ãå ±å¤éã®ãã©ã³ã·ã³ã°ã«ãã£ã¦ã¢ãã«ä¾åæ§ãä½ä¸ãããã¨ãå©ç¨ãã¦ä¿¡é ¼ã§ããããªæ¨å®çµæãçµãè¾¼ãã§ããã¨ããã«ããã¾ããææ³ãã¢ãã«ã«ãã£ã¦æ§ã ãªæ¨å®å¤ãå¾ããã¾ããããã¤ã¢ã¹ã®è©ä¾¡æ¹æ³ããªãããæ¡ç¨ãã¹ããã®ãããããªãã¨ããåé¡ãããã¾ããããããå ±
ãã®è¨äºã¯ãå¥ã«ã¡ãã£ã¨ããçç±ããã£ã¦RçKerasã§èªåã®DNNã¢ãã«ãfine-tuningãããã¨æã£ãã®ã§ã調ã¹ã¦å¾ãããç¥èããã ã¾ã¨ããã ãã®åå¿é²ã§ããæ¢ã«ããæ¹ããåç¥ã®æ¹ããèå³ããªãã¨ããæ¹ã¯ãèªã¿ã«ãªããªãã¦ã大ä¸å¤«ã§ãããã ãããã®ããæ¹ééã£ã¦ãããããã®ç解ã¯èª¤ã£ã¦ãããçãªãææã¯å¤§æè¿ã©ããã大åéä¸ã§ãã®ã§ãã³ã¡ã³ããªã©ã§ãä¸å ±ãã ããã Fine-tuningã¨ã¯ RçKerasã®ããã¥ã¡ã³ãã«æ¸ãã¦ããã㨠Rã³ã¼ãã¨å®é¨çµæ Fine-tuningã¨ã¯ åã ããé°å²æ°ã§ã¯ç解ãã¦ãããã§ãã*1ãé°å²æ°ããç¥ããªããæ ã«é©åãªã¾ã¨ãæ¹ãåãããªãã®ã§ãã¡ãã®ããã°è¨äºããå¼ç¨ããã¦ããã ãã¨ã ãã¡ã¤ã³ãã¥ã¼ãã³ã°ã¨ã¯ãå¦ç¿æ¸ã¿ã¢ãã«ã®ä¸é¨ãããã¯ãã¹ã¦ã®å±¤ã®éã¿ã微調æ´ããææ³ã§ãã転移å¦ç¿ã§ã¯ãå¦ç¿æ¸ã¿ã¢ãã«ã®éã¿ãåºå®ãã¦ç¨ãã¾ããããã¡ã¤ã³
Marketing mix modeling (MMM) is a process used to quantify the effects of different advertising mediums, i.e. media. It is also used to optimize the spend budget over these different mediums. The popular method of choice is multiple regression analysis. The model also takes into account other variables such as pricing, distribution points, and competitor tactics. This article will explain the math
RobynRobyn is an experimental, AI/ML-powered and open sourced Marketing Mix Modeling (MMM) package from Meta Marketing Science. A New Generation of Marketing Mix ModelingOur mission is to democratise modeling knowledge, inspire the industry through innovation, reduce human bias in the modeling process & build a strong open source marketing science community. Automated hyperparameter optimization w
What is Robyn?: Robyn is an experimental, semi-automated and open-sourced Marketing Mix Modeling (MMM) package from Meta Marketing Science. It uses various machine learning techniques (Ridge regression, multi-objective evolutionary algorithm for hyperparameter optimization, time-series decomposition for trend & season, gradient-based optimization for budget allocation, clustering, etc.) to define
ãã®è¨äºã§ã¯ãFacebookExperimentalã®Robynã®æåã®æ¦è¦ã説æãã¾ããFacebookã®ãã¼ã±ãã£ã³ã°ãµã¤ã¨ã³ã¹ãã¼ã ã¯ãã§ã«åªããã¯ã¤ãã¯ã¹ã¿ã¼ãã¬ã¤ãã¨é常ã«è©³ç´°ãªãã¼ã¸ãä½æãã¦ããã®ã§ãè¨äºãçãç°¡æ½ã«ä¿ã¤ããã«ãã¦ãã¾ãã詳細ãªèª¬æã®ããã«ãããªãã¯ããå¤ãè¦ã¤ãããã¨ãã§ããããã§æ å ±ãã tl; dr Facebook Experimentalã®Robynã¯ãèªååããããã¼ã±ãã£ã³ã°ããã¯ã¹ã¢ããªã³ã°ï¼MMMï¼ã³ã¼ãã§ãããç¾å¨ãã¼ã¿çã§ãã ããã¯ãç¹å¾´å¤æã®ããã®2ã¤ã®ã¢ãã¹ããã¯ï¼å¹¾ä½å¦çããã³ã¯ã¤ãã«ï¼ããã³Sæ²ç·å¤æï¼åç©«éæ¸ï¼ææ³ãæä¾ãã¾ãã æç³»åæ©è½ãèæ ®ã«å ¥ããããã«ãRobynã¯FacebookProphetãå©ç¨ãã¾ãã Facebookã®Nevergradå¾é ã®ãªãæé©åãã©ãããã©ã¼ã ãå©ç¨ãã¦ãä¸é£ã®ãã¬ã¼ãæé©ã¢ãã«ã½ãª
èæ¯ ãã¤ããããã§ãããMarketing Mix Modelingï¼MMMï¼ã®è©±é¡ã§ãã å æ¥ããããªé¢ç½ãè«æãè¦ã¤ãã¾ããã Googleã®Researcherã«ããMMMã®è«æï¼å½¼ãã¯Media Mix Modelingã¨å¼ãã§ãã¾ãï¼ãªã®ã§ããããã«ã®å¼ãç¨ãã¦åºåã®Shapeå¹æï¼Carvetureå¹æï¼ãæ¨å®ããã¨ãããã¨ããã£ã¦ãã¾ããããã§Shapeå¹æã»carvetureå¹æã¨ã¯ãã¡ãã£ã¢ã®é²åºéã«å¯¾ããç®çå¤æ°ã®åå¿ã示ãæ²ç·ãæãããã§ããã«ã®å¼ã¨ã¯ï¼ $$ H(x; K, S) = \frac{1}{1 + (\frac{x}{K})^{-S}} $$ ã§ããã$K > 0$ã$S > 0$ã¨ãªããã©ã¡ã¼ã¿ã«ãã£ã¦LogãSigmoidã®å½¢ç¶ã表ç¾ãããã¨ãã§ããããã§ãã ãã«ã®å¼ã«ãã£ã¦xãã©ã®ãããªå½¢ç¶ã¨ãªãããå®éã«ç¢ºèªãã¦ã¿ã¾ããããã¾ãã¯ãã«ã®å¼ã以
ãã£ããæã«å ¥ãããThinkPad å³ã¯ãªãã¯ãã¥ããã¾ã¾ã使ã£ã¦ã¾ãããï¼ ThinkPad ï¼ç¹ãã©ãã¯ãããï¼ã¿ãããããï¼ã®å³ã¯ãªãã¯ãã¹ã¯ãã¼ã«ãã¿ã³ããããããããã«ã¯ã»ã»ã» ãã©ãã¯ãããã®ãã©ã¤ããã¢ãããã¼ããã â ThinkPad ãã©ãã¯ããã ãã©ã¤ã ãã¦ã³ãã¼ã ï¼ã¬ããå ¬å¼ãµã¤ãï¼ å¯¾å¿æ©ç¨®ï¼X240,X240s,T440S,T440P,T540P,Yoga,Helix 対å¿OSï¼WINDOWS 8.1/ 8/ 7 ç§ã®å¨ãã«ã¯ThinkPad X240ã使ã£ã¦ãå人ãï¼ï¼äººä»¥ä¸ãã¾ãã ãã©ãã¯ãããã®å³ã¯ãªãã¯ãã§ããªãã¦ãããããã ã¹ã¯ãã¼ã«ãã¿ã³ããã¾ãèªèãã¦ãããªã ã¨ãã»ã¨ãã©ã®å人ãå£ããããã¦è©±ãã¦ãã¾ããã ããã§ããã©ãã¯ãããã®ãã©ã¤ããæ´æ°ãã¦ããã£ãã¨ããã ãã®ããããå³ã¯ãªãã¯ããããããªã£ãã ThinkPad X240
ããã¯åãªãåå¿é²ã§ãããè«æã¨ãµã³ãã«ã³ã¼ãèªã¿ãªãã試ãã¾ããã以å¤ã«ä½ãå 容ã®ãªãè¨äºã§ãã®ã§ã注æãã ãããç¹ã«åã ã®å¼ã®å¤æ°ã®èª¬æã«ã¤ãã¦ã¯å人çãªåå¿é²ãã大åã端æãã¾ãã®ã§ãä»®ã«èå³ãæãããæ¹ã¯é©å®è«æã®æ¬æããåç §ä¸ãããèªãã è«æã¯ãã¡ãã Bayesian Methods for Media Mix Modeling with Carryover and Shape Effects â Google Research ãªãããã®è¨äºãæ¸ãã«å½ãã£ã¦id:ushi-goroshiããã®ãã¡ãã®ããã°è¨äºã·ãªã¼ãºãåèã«ããã¦ããã ãã¾ãããåãããããã¦å¤§å¤å©ããã¾ãããæé£ããããã¾ãã ããã§ã¯é©å½ã«ãã£ã¦ããã¾ãã Ads carryover & shape effectsã«ã¤ã㦠ããããMedia Mix Modeling (MMM)ã®èã¯ãåºåãæä¸ããã
The Python Tutorial¶ Python is an easy to learn, powerful programming language. It has efficient high-level data structures and a simple but effective approach to object-oriented programming. Pythonâs elegant syntax and dynamic typing, together with its interpreted nature, make it an ideal language for scripting and rapid application development in many areas on most platforms. The Python interpre
ãªãªã¼ã¹ãé害æ å ±ãªã©ã®ãµã¼ãã¹ã®ãç¥ãã
ææ°ã®äººæ°ã¨ã³ããªã¼ã®é ä¿¡
å¦çãå®è¡ä¸ã§ã
j次ã®ããã¯ãã¼ã¯
kåã®ããã¯ãã¼ã¯
lãã¨ã§èªã
eã³ã¡ã³ãä¸è¦§ãéã
oãã¼ã¸ãéã
{{#tags}}- {{label}}
{{/tags}}