é¯è¦ã®ä»çµã¿ããæ°çç§å¦ã®ææ³ã§èª¿ã¹ãç 究ããã¸ã§ã¯ããè¨ç®é¯è¦å¦ããç«ã¡ä¸ãã¾ãããç 究ã®ä¸ã§çã¾ããæ°ããé¯è¦ä½åãå ¬éããé¯è¦ç¾è¡é¤¨ãä½µè¨ãã¦ãã¾ãã
é¯è¦ã®ä»çµã¿ããæ°çç§å¦ã®ææ³ã§èª¿ã¹ãç 究ããã¸ã§ã¯ããè¨ç®é¯è¦å¦ããç«ã¡ä¸ãã¾ãããç 究ã®ä¸ã§çã¾ããæ°ããé¯è¦ä½åãå ¬éããé¯è¦ç¾è¡é¤¨ãä½µè¨ãã¦ãã¾ãã
2024/9/17 ã°ã©ãä½ææ©è½ã®æä¾ãçµäºãã¾ããã ãå©ç¨ã®ã客ãã¾ã«ã¯ãä¸ä¾¿ãããããã¾ããããç解è³ãã¾ããããé¡ãç³ãä¸ãã¾ãã ï¼æä¾çµäºæ¥ 2024/9/17ï¼ 2023/9/20 å°å³ãå©ç¨ããæ©è½ã®æä¾ãçµäºãã¾ããã 2023/7/3 ã©ã¤ãã©ãªã追å ãã¾ããã éçã®OPSã®è¨ç® 2023/6/20 ã©ã¤ãã©ãªã追å ãã¾ããã åä¾ã®å復横ã¨ã³ã®å¹³åå¤ 2023/3/6 ã©ã¤ãã©ãªã追å ãã¾ããã 60æ³ä»¥éåããå ´åã®å¹´éå¢å é¡ãè¨ç® 2023/2/16 ã©ã¤ãã©ãªã追å ãã¾ããã ç£æå¯åº¦ã®æç® 2023/2/9 ã©ã¤ãã©ãªã追å ãã¾ããã è§é度ã®æç® 2023/1/27 ã©ã¤ãã©ãªã追å ãã¾ããã ç¨ç士ãå¸æ³æ¸å£«çã®å ±é ¬ã®æºæ³å¾´åç¨é¡ãè¨ç® 2023/1/12 ã©ã¤ãã©ãªã追å ãã¾ããã ãªãã£ã«å¦æ¹ç®ã®æ¥ã«ã¡è¨ç® 2022/12/21 ã©ã¤ãã©ãªã追å ã
�Acrobat � Edition Thanks to special permission from Cambridge University Press, we are able to bring you the complete Numerical Recipes in C book On-Line! To utilize this resource, you will need an Adobe Acrobat viewer linked as a helper program to your WWW browser. Permission is granted by the copyright owners for users of the World Wide Web to make one paper copy of these PostScript files for t
ç¥å´è±æ°å¡¾ããæ°å¦ç¨èªåè±è¾å ¸ èæ¯è²å¤æ´ 表ã®æåãã¯ãªãã¯ããã¨ããã®æåã®æã¸ã¸ã£ã³ããã¾ãã ãã¼ã¸ã®ãããã«æ»ãæã¯ãå·¦ã®ãã²ã¨ã¤æ»ãããã¿ã³ã¾ã㯠ãã©ã¦ã¶ã®æ»ããã¿ã³ã§ãé¡ããã¾ãã ã ã ã ã 㪠㯠㾠ã ã ã ã ã ã ã¡ ã« ã² ã¿ ã ã ã ã 㤠㬠㵠ã ã ã ã ã ã 㦠ã 㸠ã ã ã ã ã 㨠㮠㻠ã ã ã ç¾å¨ã1281 ã®è¦åºãèªãåé² ã 10 èª
ORå¦ä¼50å¹´ã®æ´å²ã®ä¸ã§ï¼ORäºå ¸ã®ç·¨çºã»æ¹è¨ã¯éç®ï¼åº¦ç®ã¨ãªãï¼ãããããªçç±ããORäºå ¸ç·¨éå§å¡ä¼ã¯ï¼ãORäºå ¸ããWebã«å ¬éããã¨ããæ段ãã¨ããã¨ã«ãªã£ãï¼ååã¯CDã«ããåºçã§ãã£ãï¼ è³æç·¨ã ãã¯ãORäºå ¸ãããåãé¢ãã¦ï¼ORå¦ä¼ã®é常ã®ãã¼ã ãã¼ã¸ã®ä¸ã«ç§»ããã¨ã«ãªã£ãï¼ããã¯éç¬å·æµ©åå§å¡é·ã®ã¢ã¤ãã£ã¢ã§ãããå 容ã®æ§æ ¼ä¸ï¼è³æ追å ãééãã®è¨æ£ãåºå ±å§å¡ä¼ã®è²¬ä»»ã§ç°¡åã«åºæ¥ãããã«ãªãï¼ ååã¾ã§ã®å¦ä¼ã®æ´å²è³æã¯ãã®ã¾ã¾æ®ãã¦ããï¼ä»åã¯ãã¼ã¿è¿½å ä½æ¥ãåºæ¬ã«å¤å°ã®è³æ追å ãè¡ã£ãï¼åäºåå±é·ã®è¤æ¨ç§å¤«ããã«ã¯ï¼ãã®å¾ã®å¦ä¼æ´»åå ¨è¬ã«ãããè¨é²ãã¾ã¨ãã¦å稿ãä½æãã¦ããã£ãï¼å¦è¡ä¼è°é¢ä¿ãè¤æ¨ãããååã®å½¢å¼ã«ç¿ã£ã¦è³æå稿ãä½æãï¼FMESä¼é·ã®é«æ©å¹¸éããã«ç®ãéãã¦ããã ããï¼ åæ¯é¨ããå¢è£è¿½å ã®å稿ãéããã¦ããï¼Webã®ãµã³ãã«ãè¦ã¦ãã ããã¨è¨ã£ã¦
ããã°ã©ã ã§è¡åæ¼ç®ããã¦ããã¨éè¡åãå¿ è¦ã«ãªããã¨ããã°ãã°ããã¾ãã 2Ã2ã®éè¡åãªãç°¡åã«æ±ã¾ããããããã§ããããããã大ããªè¡åã«ãªãã¨å ¬å¼ãããå ¬å¼ãè¦å½ãããªãã®ã§ä»æ¹ãªãLUå解ã®ã«ã¼ãã³ãçµãããªãã¦ãã¨ãç§ã¯ä½åãçµé¨ãã¾ããã ãã ããã®LUå解ã®ã«ã¼ãã³ãçµæ§åä»ã§ãããããæä½ãªã©ãã¡ããã¨ã«ã¼ãã³ã«çµã¿è¾¼ãã§ãããªãã¨ã¼ãé¤ç®ã¨ããçºçãã¦ãã¾ããæ¬å½ã¯éè¡åãåå¨ããã«ããããããç®åºã§ããªãããªãã¦ãã¨ã«ãªã£ã¦ãã¾ãã¾ãã ãããããã®ãã®æ°å¤æ¼ç®ã®ã¢ã«ã´ãªãºã ã¯æ°å¼ä¸ã§ã¯æ£ç¢ºã§ãã³ã³ãã¥ã¼ã¿ã«è¨ç®ãããã¨å¤§ããªèª¤å·®ãçºçãã¦ãã¾ãã®ã§å°ã£ãããã§ãã ãã¡ããã¡ãããããã°ã©ã ãçµã¾ãªãã¦ãéè¡åãåºããªãããªããã¨æã£ã¦ã¡ãã£ã¨èå¯ãã¦ã¿ã¾ããã
çé¢ãåçã«åå²ããã¢ã«ã´ãªãºã (è¨ç®æ¹æ³) å¹³é¢ãåçãªé¢ç©ã®å°çã«åå²ããã®ã¯ç°¡åã ã X軸ãY軸ãåçãªééã§åå²ãã¦ãæ¹ç¼ç´ã®ããã«åå²ããã°ããã®ãã®ã®æçã¯ãã¹ã¦åçãªé¢ç©ã«ãªãããã®ãããªæ¹ç¼ç´ã«åå²ãããã®ã¯ãã¡ãã·ã¥ã¨ãã°ãããããããªè¨ç®ã«ãã使ãããã ã¨ããã§ããã種ã®è¨ç®ã§ã¯ãçé¢ãåçã«åå²ããã¡ãã·ã¥ãå¿ è¦ãã¨ããããåç´ã«æ¹ç¼ç´ã®ããã«åã£ã¦ããçé¢ä¸ã§åçãªé¢ç©ãæã¤ã¡ãã·ã¥ã¯å¾ãããªãã ããã§å·¥å¤«ãå¿ è¦ã¨ãªããä¸çªåãã«èããããã®ã¯ãæ£å¤é¢ä½ããåºæ¬æ§é ã¨ãã¦ããããé 次ãç´°ååãã¦ããæ¹æ³ã ãã¾ãããã®åºæ¬ã¨ãªãæ£å¤é¢ä½ã®é¸ã³æ¹ãéè¦ã¨ãªãã ãæ£äºåé¢ä½ã®ããã«ãåãã«å¤§ããªå¤é¢ä½ãæ¡ç¨ããã¨ãå°ãªãåæ°ã®ç´°ååããã»ã¹ã§ãç´°ããã¡ãã·ã¥ãå¾ããããããããç´°ååãããå°çã®å½¢ç¶ãæ£ä¸è§å½¢ã«è¿ããæ¯è¼çåä¸ã¨ãªããããã¦ãå¾ãããå°ç群ã¯ã5å
ã¢ã³ãã£ã»ãã¼ã«åé¡ éã¾ã£ã3ã¤ã®ãã¢ã®ãã¡ãå½ããã¯1ã¤ããã¬ã¼ã¤ã¼ã1ã¤ã®ãã¢ãé¸æãããã¨ãä¾ç¤ºã®ããã«å¤ãã®ãã¢ã1ã¤éæ¾ããããæ®ã2æã®å½ããã®ç¢ºçã¯ç´æçã«ã¯ãããã 1/2ï¼50%ï¼ã«ãªãããã«æããããã¯ããã¦ããã¯æ£ããã ãããã ã¢ã³ãã£ã»ãã¼ã«åé¡ï¼ã¢ã³ãã£ã»ãã¼ã«ããã ããè±: Monty Hall problemï¼ã¨ã¯ã確çè«ã®åé¡ã§ããã¤ãºã®å®çã«ãããäºå¾ç¢ºçããããã¯ä¸»è¦³ç¢ºçã®ä¾é¡ã®ä¸ã¤ã¨ãªã£ã¦ãããã¢ã³ãã£ã»ãã¼ã«ï¼è±èªçï¼ï¼Monty Hall, æ¬åï¼Monte Halperinï¼ãå¸ä¼è ãåããã¢ã¡ãªã«ã®ã²ã¼ã ã·ã§ã¼çªçµããLet's make a dealï¼è±èªçï¼[注é 1]ãã®ä¸ã§è¡ãããã²ã¼ã ã«é¢ããè«äºã«ç±æ¥ãããä¸ç¨®ã®å¿çããªãã¯ã«ãªã£ã¦ããã確çè«ããå°ãããçµæã説æããã¦ãããªãç´å¾ããªãè ãå°ãªããªããã¨ãããã¢ã³ãã£ã»ãã¼ã«
ãè² Ãè² ã¯æ£ãã¯è¨¼æã§ãããã¨ã§ããããï¼ãé«æ ¡æ°å¦ï¼Î±ï¼åºç¤ã¨è«çã®ç©èªãã¯åºç¤ãéè¦ãï¼è«ççè½åãéããå¦ç¿åèæ¸ã§ãï¼
â ãã®ãã¼ã¸ã®å¯¾è±¡èªè ä¸æ¬¡å ã§ã®å転ããCGã¨ãã§å®éçã«åãæ±ããã人 ãªã¤ã©ã¼è§(Euler Angles)ã使ã£ã¦ãããããããããããªããªã£ã¦ãã人 ã«ã«ãã³è§ã¨ãªã¤ã©ã¼è§(Cardan Angles)ã®è¦åããä»ããªã人 ã¸ã³ãã«ããã¯ã«å°ã£ã¦ãã人 ã ãã©ãæ°å¦ã¨ãã¡ã³ãã¯ãµã¤ãã¨ãå«ããªäºº ãµã³ãã«ããã°ã©ã ã欲ãã人 â å転ç¯ï¼ãåå æ°ï¼ããããã, quaternionï¼ã使ã£ãå転ã®åãæ±ãæé ã ã説æãã¾ã ï¼ï¼ï¼åå æ°ã®å®é¨ã¨èé¨ã¨æ¸ãæ¹ åå æ°ã¨ã¯ãï¼ã¤ã®å®æ°ãçµã¿åããããã®ã§ãã ï¼ã¤ã®è¦ç´ ã®ãã¡ãã²ã¨ã¤ã¯å®é¨ãæ®ãï¼ã¤ã¯èé¨ã§ãã ãã¨ãã°ãQã¨ããåå æ°ããå®é¨ t ã§èé¨ã x, y, z ããæãç«ã£ã¦ããã¨ããä¸ã®ããã«æ¸ãã¾ãã ã¾ããV = (x, y, z)ã¨ãããã¯ãã«ã使ã£ã¦ã Q = (t; V) ã¨ãæ¸ããã¨ãããã¾ãã æ£çµ±ç
Boolean Operations CGAL::corefine_and_compute_boolean_operations(statue, container); Wrapping CGAL::alpha_wrap(); Triangulations CGAL::make_triangulation(); Axis Aligned Bounding Box Tree CGAL::AABB_tree tree(faces(surface_mesh)); The Heat Method CGAL::Heat_method_3::estimate_geodesic_distances(); Mesh Segmentation CGAL::sdf_values(surface_mesh); Classification CGAL::Classification::classify(las_p
æ³ç·ã n := (θ, Ï) = [sinθcosÏ sinθsinÏ cosθ]⤠ã®å¤§åããã©ã¡ã¿å½¢å¼ã§è¡¨ãã¨, R(θ, Ï) [cos(t) sin(t) 0]⤠ãã, [x] [ cos(θ)cos(Ï)cos(t)âsin(θ)sin(t) ] [y]=[ cos(θ)sin(Ï)cos(t)+cos(Ï)sin(t) ] [z] [âsin(θ)cos(t) ] Gnuplot ã§æç»ããä¾ set para th=pi/4 # 天é è§ ph=pi/9 # æ¹ä½è§ set arrow to sin(th)*cos(ph), sin(th)*sin(ph), cos(th) # æ³ç·ãã¯ãã« splot [0 to 2*pi] cos(th)*cos(ph)*cos(u)-sin(ph)*sin(u), \ cos(th)*sin(ph)*cos(u)+cos(ph)*si
WEB Davinci Last update 20 Jun,2004. WuÆÉÍcDÉÒBvÔO WuguKNÌhÉqÈ|ÍÇê¾HvÔO eWB fÚÒÉÍIÅ}v[gI Ìv`i{ 6/5UP cÈÌ{oÅ�Ãé»ÝA Ì{Éë¢{Éoï¤ÌÍÈÈÞB vÄÇÒÌÝÈÉA_EB`ÒW Acããã«æ±äº¬é座 æ±äº¬é½ Anaã¤ã³ã¿ã¼ã³ã³ããã³ã¿ã«ããã«æ±äº¬ æ±äº¬é½ Bulgari Hotel æ±äº¬é½ The Aoyama Grand Hotel æ±äº¬é½ THE GATE HOTEL æ±äº¬ by HULIC æ±äº¬é½ ã¦ã§ã¹ãã£ã³ããã«æ±äº¬ æ±äº¬é½ ãã³ããã³ æ°å®¿æ±äº¬ æ±äº¬é½ ã°ã©ã³ãããªã³ã¹ããã«æ°é«è¼ª æ±äº¬é½ ã¶ã»ãã¿ãããã«æ±äº¬ æ±äº¬é½ ã¶ã»ãã£ããã«ããã«æ±æ¥ æ±äº¬é½ ã¶ã»ããªã³ã¹ã®ã£ã©ãªã¼ æ±äº¬ç´å°¾äºçº, ã©ã°ã¸ã¥ã¢ãªã¼ã³ã¬ã¯ã·ã§ã³ããã« æ±äº¬é½ ã·ã§ã©ãã³ã»ã°ã©ã³ãã»ãã¼ãã§ã¼ãã¤ã»ã
座æ¨å¤æ ã»sin,cosã«ã¤ã㦠è§åº¦Î¸ãããã¨ãã¾ããããã§ããè§åº¦ã¨ã¯åæè¨åããªãã°æ£ã®å¤ æè¨åããªãã°è² ã®å¤ã¨ãã¾ããX軸ã«å¯¾ãã¦Î¸ã®è§åº¦ããªãã¦ãã ç´ç·ãèãã¾ãããã®ç´ç·ã¨åå¾1ã®åã交差ãã¦ããç¹ã®X座æ¨ã®å¤ã cosθãY座æ¨ã®å¤ãsinθã¨ãªãã¾ãã ã»ä¸æ¬¡å¤æ (x,y)ã®ç¹ãåæè¨åãã«Î¸ã ãå転ãããå ´å(å転å¾ã®ç¹ã¯(x',y')) x' = x * cosθ - y * sinθ y' = x * sinθ + y * cosθ ãããè¡å表ç¾ã«ãã㨠|x'| = | cosθ -sinθ ||x| |y'| | sinθ cosθ ||y| 以ä¸æ¦å¿µå³ |x0' y0'| = x0 * ix + y0 * iy |x0' y0'| = |x0 y0||cosθ sinθ| |-sinθ cosθ| ã»ï¼æ¬¡å ã®åº§æ¨å¤æ x,y,z:å¤æåã®åº§æ¨; x',
ããã§ã¯ãWebä¸ã§æ°å¼ã表ç¾ããMathMLã®ãµã³ãã«æç« ã¨ããã®ãããªæç« ãã©ããã£ã¦ä½ã£ããã®è§£èª¬ããã¦ãã¾ãã MathMLã§æ¸ãããæç« ã¯æ®éã®ç¶æ ã®InternetExplorerã§ã¯ãã¾ãã¿ãã¾ããã FirefoxãMozillaãªã©MathML対å¿ã®ãã©ã¦ã¶ã¼ã§ã覧ãã ããã(FirefoxãMozillaã§ããã©ã³ãã®ãã¦ã³ãã¼ãçãå¤å°ã®è¨å®ãå¿ è¦ã§ããï¼ Firefoxã¨Mozillaã¹ã¤ã¼ãã®èª¬æã¨ãã¦ã³ãã¼ãã¯ãã¡ãããããã¯ãã¡ããè¦ã¦ãã ããã Mozillaã®æ¬å®¶ã¯ãã¡ãï¼ãã ãè±èªï¼ã§ãã MathMLç¨ã®ãã©ã³ãã®ã¤ã³ã¹ãã¼ã«ã®èª¬æã¯ãã¡ãã§ãã ã©ããã¦ãã¤ã³ã¿ã¼ãããã¨ã¯ã¹ããã¼ã©ã§è¦ããã¨ãã人ã¯ãMathPlayerãã¤ã³ã¹ãã¼ã«ãã¦ãã ããã MathPlayerã®ãã¦ã³ãã¼ãã¨ã¤ã³ã¹ãã¼ã«ã¯ãã¡ãã§ãã Download MathP
â 30åã§ãããéååå¦ã®ä¸ç éååå¦ã¯é£è§£ã§ãã æåã®ãã¨ã£ã¤ããã®æ®µéãç¹ã«é£ãããè¦å´ãã¾ãã å ¥éæ¸ãæ°å¤ãåºçããã¦ãã¾ããããããã§ããé£ããæãããã¨ãããã¾ãã ãããã¼ãã§ãã æ°å¼ã®ç´°é¨ããããã®å¼ããä½ãæå³ããããã®æ¹ã大åã§ãã åæ©ã®æ®µéã§ã¯ç´è¦³çãªç解ãéè¦ã§ããå³å¯ãªå®ç¾©ãªã©å¿ è¦ããã¾ããã é£è§£ãªéååå¦ãç°¡åã«ã»ã»ã» æç³»ã ããéååå¦ã«èå³ãæã£ã¦ããã»ã»ã»ã» ã¨ããæ¹ãæè¿ãã¾ãã ã¯ãæ°ããè¦ç¹ã§ãã éååå¦ã¯ãæç³»ã«ãæå¤ãªå½¢ã§å¿ç¨ã§ãã¾ããããã©ã³ãããã価å¤è¦³ãããçµå¶æ¦ç¥ããªã©ãç´æ¥ ç®ã§è¦ããã¨ã®ã§ããªããã®ããéåç³»ã®æ°çã§ãè¦ããåãããã ãéåãã¼ã¿ãã¥ã¼ã¸ã§ã³ããªã©ã®åå¨ãããã¾ãç¥ããã¦ãã¾ããã ããããæ½è±¡æ¦å¿µã®å¯è¦åãã§ãã»ã»ã» ã§ãããã®åã«éååå¦ãç°¡åã«ã»ã»ã» èªåã®æ½å¨æèã«å¤§è³ççå¦çã«ã¢ã¯ã»ã¹ãããã®å¥¥
ãªãªã¼ã¹ãé害æ å ±ãªã©ã®ãµã¼ãã¹ã®ãç¥ãã
ææ°ã®äººæ°ã¨ã³ããªã¼ã®é ä¿¡
å¦çãå®è¡ä¸ã§ã
j次ã®ããã¯ãã¼ã¯
kåã®ããã¯ãã¼ã¯
lãã¨ã§èªã
eã³ã¡ã³ãä¸è¦§ãéã
oãã¼ã¸ãéã
{{#tags}}- {{label}}
{{/tags}}