Chromeã®ãªãã® ã³ã³ãã¥ã¼ã¿ã»ãµã¤ã¨ã³ã¹ * haraken@chromium.org 2015 Sep *
é¢æ£æ§é ã® ãªã³ã©ã¤ã³äºæ¸¬ çå æå¹³ ä¹å·å¤§å¦ IBIS2013 ä¼ç»ã»ãã·ã§ã³ãå¦ç¿çè«ã é¢æ£æ§é ãç¨ãã âãªã³ã©ã¤ã³âææ決å®åé¡ ï¼æµå¯¾çï¼ç°å¢ ãã¬ã¤ã¤ã¼ ç´¯ç©æ失ã å°ããããã For t=1,â¦,T: é¢æ£æ§é C ï t c æ失 ) ( t c lt å ·ä½ä¾ï¼è³æºå²å½ï¼ãããã¯ã¼ã¯æé©åï¼æççµè·¯ï¼ ã¹ã±ã¸ã¥ã¼ãªã³ã°ï¼ã©ã³ãã³ã° æ¬çºè¡¨ï¼å¦ç¿çè«ã®ç«å ´ããã®ãµã¼ã㤠ç®æ¬¡ 1. é¢æ£æ§é ã®ãªã³ã©ã¤ã³äºæ¸¬åé¡ 2. é¢æ£âé£ç¶ãã¯ãã«äºæ¸¬ã¸ã®å¸°ç 3. ãªãã©ã¤ã³ï¼ãªã³ã©ã¤ã³å¤æ ä¾ï¼ï¼ãªã³ã©ã¤ã³è³æºå²å½åé¡ ãã¹2 ãã¹3 ãã¹1 è·¯ç·A è·¯ç·B è·¯ç·C 0.6 0.3 0.9 0.7 0.5 0.7 0.8 0.4 0.4 For t=1,â¦,Tæ¥é: ãã¹ãè·¯ç· ã¸å²å½ ï¼ ã³ã¹ã ãå²å½ ï¼ tæ¥ç®ã«ããããã¬ã¤ã¤ã¼ã®æ失 ï¼ ãã¬ã¤ã¤ã¼ ï¼ãã¹ä¼ç¤¾ï¼ ç°å¢
å½éå¦ä¼ ALENEX 2014 ã«è«æãæ¡æããã¾ããï¼ALENEX (Meeting on Algorithm Engineering & Experiments) 㯠SIAM ã«ãã£ã¦éå¬ãããå®é¨ç³»ã¢ã«ã´ãªãºã (experimental algorithmics) ãæ±ãæãæåãªä¼è°ã® 1 ã¤ã§ï¼çè«ç³»ã¢ã«ã´ãªãºã ã®ãããå¦ä¼ SODA (Symposium on Discrete Algorithms) ã«ä½µè¨ãã¦éå¬ããã¾ãï¼çºè¡¨ã¯æ¥å¹´ã® 1 æã«ã¢ã¡ãªã«ã®ãªã¬ã´ã³ã§ãï¼ ä»åã®è«æ㯠"Fast Shortest-path Distance Queries on Road Networks by Pruned Highway Labeling" ã¨ããã¿ã¤ãã«ã§ï¼ç 究室ã®å¾è¼©ã®æ²³ç°åï¼åæã®å²©ç°ï¼NII ã®æ²³åæå çã¨ã®å ±èã§ãï¼ã¿ã¤ãã«ãããå¯ãã®éãï¼SIGMOD'
ãã³ã¬ã§ããããã¼ãªã¨è§£æ ä½è :æ¸è°·éé,æ´ç¬ã²ãããªã¼ã 社Amazon ããåã©ããã¡ãæ°å¤é åãæ¥å¸¸çã«æ±ã£ã¦ãã俺éããã°ã©ãã¼ã«ã¨ã£ã¦ããã¼ãªã¨å¤æãããã«ç°¡åãã¨ããã¤ã¡ã¼ã¸ãå¿ããªãããã«ä»¥åæ¥è¨ãæ¸ãã¾ããããã®ä¸ã§ãDFTï¼é¢æ£ãã¼ãªã¨å¤æï¼è¨ç®ã®å®è·µå®è£ ä¾ãè¦ã¾ããã ããã¦ä»æ¥ã¯ãã®é«éçãFastFourierTransformï¼é«éãã¼ãªã¨å¤æï¼ï¼ä»¥ä¸ãFFTï¼ã®å®è£ åã³åçãç´¹ä»ãã¾ããï¼å®éã«åãC++ã®ããã°ã©ã ã½ã¼ã¹ã³ã¼ãã¯æ¬è¨äºã®ä¸çªæå¾ã®æ¹ã«ããã¾ããï¼ FFTã¯20ä¸ç´ã®10大ã¢ã«ã´ãªãºã ã®ä¸ã«ãæ°ãããããã¨ã¦ãæåãªã¢ã«ã´ãªãºã ã§ãããã¾ããã¨ã¯ãããã®æ´å²ã¯å¤ããFFTãDFTã®æ¬å½ã®èµ·æºã¨ããã¨ããã¾ã§è¡ãã¨ããã®å¤§æ°å¦è ã¬ã¦ã¹ï¼1777å¹´çã¾ãï¼ãæ¢ã«æ°ä»ãã¦ããï¼ãªã©ã¨ããåãããããããããèªä½ããã¼ãã«ããç 究è«æãåºçãããããã¦ã
Graphillion ã¯è¨å¤§ãªæ°ã®ã°ã©ãã«å¯¾ãã¦æ¤ç´¢ãæé©åãåæãè¡ãããã® Python ã¢ã¸ã¥ã¼ã«ã§ãããã®ãããªã¯ Graphillion ã®æ¦è¦ãç¥ãããã®ãã¥ã¼ããªã¢ã«ã§ããããã«ã·ã®ã®æ°ãæ¹ã http://youtu.be/Q4gTV4r0zRs ã®ç¶ç·¨ã¨ãã¦ä½æããã¾ããã Graphillion is a Python software package on search, optimization, and enumeration for a very large set of graphs. This video is a quick tutorial to learn what Graphillion is. The story follows our previous episode, "Let's count!" http://youtu.be/Q4gT
1. 2012/06/12 ãã£ã¼ã»ã¨ãã»ã¨ã¼ æ¸è°·ãªãã£ã¹ (TopCoder Meetup in Japan) ããã°ã©ãã³ã°ã³ã³ãã¹ãã§ã® ä¹±æã¢ã«ã´ãªãºã æ±äº¬å¤§å¦æ å ±çå·¥å¦ç³»ç ç©¶ç§ ç§è æå / [[iwi]] 1 2. èªå·±ç´¹ä» ⢠ç§è æå / [[iwi]] â Twitter: @iwiwi ⢠æ±äº¬å¤§å¦ æ å ±çå·¥å¦ç³»ç ç©¶ç§ ã³ã³ãã¥ã¼ã¿ç§å¦å°æ» ⢠ããã°ã©ãã³ã°ã³ã³ãã¹ãåã好ã â ä¸ç大ä¼ã®å¸¸é£ããã£ã¦ãã¾ã â ãã 1 年㧠3 åï¼æ¥æãè¡ãã¾ã ⢠ããã°ã©ãã³ã°ã³ã³ãã¹ããã£ã¬ã³ã¸ããã¯å ±è 2 3. ä»æ¥ã®è©± ãä¹±æã¢ã«ã´ãªãºã ã ⢠æ¢åã®ä¹±æã¢ã«ã´ãªãºã ã®ç´¹ä»ã延ã ã¨ã¯ãã¾ãã â ããããã¢ã«ã´ãªãºã 解説ã¯ä¸æ¯ããã¾ã ⢠ã³ã³ãã¹ãã«ç¦ç¹ãçµãï¼ä¹±æã¢ã«ã´ãªãºã ãè¨è¨ ã§ããããã«ããï¼ã¨ãããã¨ãç®æã ï¼ç°¡åãã®è©±ã«ãªãã¾ãï¼ä¸ä¸ç´è ã®
ãã£ãªã¢ã転è·ã人æè²æã®ãã³ããæä¾ãã¦ããããªã¹ããªã³ã°ããã£ã³ãã«ã¯æ°çãNIKKEIãªã¹ããªã³ã°ãã¨ãã¦ã¹ã¿ã¼ãã ãã¸ãã¹ãã¼ã½ã³ã®ããã®ãã¡ãã·ã§ã³æ å ±ãéãããMenâs Fashionããã£ã³ãã«ã¯ãTHE NIKKEI MAGAZINEããã¸ã¿ã«çã«é²åãã¾ããã ãã®ä»ã®ãã£ã³ãã«ã¯ãä¼ã¿ããå ¬éã³ã³ãã³ãã®ã»ã¨ãã©ã¯ãæ¥çµé»åçããªãã³ã«èª²é¡è§£æ±ºåãµã¤ããæ¥çµBizGateãã§å¼ãç¶ãã覧ããã ãã¾ãã
ãªã«ããDan Kogaiæ°ã®ä»¥ä¸ã®è¨äºã話é¡ã«ãªã£ã¦ããæ§åã 404 Blog Not Found:Algorithm - é£æ³é åã®å®è£ ã¨ãã¦ã®ããã·ã¥ã¯ãªã¯ã³ã³? é£æ³é å(ãã¼ã¯ã¼ããæããã¨å¯¾å¿ããå¤ãè¿ã£ã¦ãããã¼ã¿æ§é )ã¯ããã·ã¥ãã¼ãã«ã§å®è£ ããã®ã§ã¯ãªããããããã¯ãã©ã¤(trie)æ¨ã使ãã®ãã¤ã±ã¦ãï¼(æ訳)ã¨ããå 容ã ã£ãã é£æ³é åã«ããã·ã¥ãã¼ãã«ã使ãã®ãè¯ããæªããã«ã¤ãã¦ã¯è²ã ã¨æè¦ãããã¨æãã®ã§ç¹ã«ãã®è¨äºã§ã¯è§¦ããªãã ä»åã¯é£æ³é åã¨ãã¦ä½¿ããã¨è©±é¡ã®ãã©ã¤æ¨ã¨ã¯ãªãããã¨ããå ¥éçãªè¨äºã«ãããã¨æãã ãã©ã¤æ¨ãæã¤æ©è½ æåã«ãã©ã¤ãæã¤ä»¥ä¸ã®3ã¤ã®æ©è½ã«ã¤ãã¦èª¬æããã - lookup - common-prefix-search - predictive-searchã¾ããã©ã¤ã¯é£æ³é åã¨ãã¦å©ç¨ã§ãããã¤ã¾ããã¼ã¯ã¼ãã¨å¤ã®ãã¢ãç»
ãªã³ã¯via boeing boeingLondon Underground Map with Distance Gridsèªåã¯ãæ±äº¬ã«ä½ãã§ã¯ãããã®ã®ããã¾ãé½å¿ã®å°ä¸éã«ã¯ä¹ãã¾ããããªã®ã§ããââé§ ããâ¡â¡é§ ã¾ã§ã¯å¾æ©ç§»åå¯è½ãã¿ãããªåå°åãã»ã¨ãã©ç¡ãã®ãæ©ã¿ã§ããããããè·¯ç·å³ã¨ããã®ã¯å®éã®ä½ç½®é¢ä¿ã¨ã¯å¯¾å¿ããªãã®ã§ãè¿ãã¨æã£ããé ãã£ãããããããä¹ãæãã¦3é§ ç§»åãããããããè¿ãã ã£ããã¨å¤±æãå¤ãã§ããï¼ç»åå¼ç¨ï¼ä¸è¨ãµã¤ãããï¼ãªã³ã¯ã¯ããã³ãã³è·¯ç·å³ã«ãå®éã®å°çã表ç¾ããã°ãªããã表示ããã¨ãããã®ã§ãããã¶ãããã³ãã³ãããæ±äº¬ã®å°ä¸éã®æ¹ãè¤éã ã¨æãã®ã§åãããã«ã¯è¡ããªãã¨æãã®ã§ãããè·¯ç·å³ãããããã¸ã¼çã«ãæ£ãããã°ãæç»ã¯å¯è½ãªã¯ãã ã¨æãã®ã§ãã¢ã«ã´ãªãºã çã«ã¯èå³æ·±ãããããã¾ããã
2. æ¨æ¶ ⢠èªå·±ç´¹ä» â ç§èæå / @iwiwi â æ±äº¬å¤§å¦ ã³ã³ãã¥ã¼ã¿ç§å¦å°æ» M1 â ã¢ã«ã´ãªãºã ç³»ã®ç 究室 â ããã°ã©ãã³ã°ã³ã³ãã¹ãã好ã â 2009 å¹´ã«ã¤ã³ã¿ã¼ã³ããã¦ããã£ã¦ä»¥æ¥ã¢ã«ãã¤ã ã¢ãªæ¬ ï¼ã°ã©ãã®è©±ããããï¼ 1 3. ããããªã°ã©ã éè·¯ã»äº¤éãããã¯ã¼ã¯ ⢠é ç¹ï¼äº¤å·®ç¹ï¼é§ ãªã© ⢠辺ï¼éï¼è·¯ç·ãªã© ãããããã¨ã®ä¾ ⢠æ¡å ï¼äº¤éç®¡å¶ â¢ è¼¸éãç½å®³ã®ããã®è§£æ ⢠å°çæ å ±ã¨çµ¡ãããµã¼ã㹠⢠⦠2 4. ããããªã°ã©ã ã½ã¼ã·ã£ã«ãããã¯ã¼ã¯ ⢠é ç¹ï¼äºº ⢠辺ï¼äººéé¢ä¿ ãããããã¨ã®ä¾ ⢠ãç¥ãåãããï¼ãã¨ã ⢠éè¦åº¦ã»å½±é¿åº¦ã®è§£æ ⢠ã³ãã¥ããã£è§£æ ⢠æ å ±ã®ä¼æåã®è§£æ ⢠⦠(MentionMap ã§ä½æ) æ ç» 3
æ¨æ¥ï¼PFI ã»ããã¼ã«ã¦ã大è¦æ¨¡ã°ã©ãã¢ã«ã´ãªãºã ã®æå 端ãã¨ããã¿ã¤ãã«ã§çºè¡¨ãããã¦ãããã¾ããï¼ã¹ã©ã¤ãã¯ä»¥ä¸ã«ãªãã¾ãï¼ å¤§è¦æ¨¡ã°ã©ãã¢ã«ã´ãªãºã ã®æå 端 View more presentations from iwiwi å½æ¥ã¯ Ustream ãããã¦ããï¼é²ç»ãããçºè¡¨ãã覧ã«ãªãã¾ãï¼ http://www.ustream.tv/recorded/19713623 å 容ã®æµãã¨ãã¦ã¯ï¼ä»¥ä¸ã®ããã«ãªã£ã¦ãã¾ãï¼ å°å ¥ ã¢ã«ã´ãªãºã çéã§ã®è©±é¡ ææ°ã®ç 究åå éè·¯ãããã¯ã¼ã¯ã§ã®æçè·¯ã¯ã¨ãªå¦ç åºç¤çãªææ³ï¼åæ¹å Dijkstraï¼A*, ALT ææ°ã®ææ³ï¼Highway Dimension + Hub-Labeling Algorithm DB çéã§ã®è©±é¡ ææ°ã®ç 究åå è¤éãããã¯ã¼ã¯ã§ã®æçè·¯ã¯ã¨ãªå¦ç åºç¤çãªææ³ï¼ã©ã³ããã¼ã¯ãç¨ããæçè·é¢æ¨å® æ
ããã¢ã«ã´ãªãºã ã®è©±ã¨ãããã¨ãã¢ã«ã´ãªãºã ã¨ãæ¥åã§ä½¿ããªããããã©ã¤ãã©ãªãããããã¿ãããªè©±ãåºã¾ãããä»æ¥ãTwitterã§kumagiãããã競æããã°ã©ãã³ã°ãæ¥åã§å½¹ã«ç«ããªãã£ã¦è¨ã£ã¦ã人ã¯ã»ã»ã»ãã£ã¦è©±ãã¦ãããã§ãã ã§ãã¾ããã¢ã«ã´ãªãºã ã®åå¼·ã£ã¦ã®ã¯ãå®è£ ãããåé¡ãããã«å¹çã®ããããã°ã©ã ã«è½ã¨ããã£ã¦ãã話ãªãã§ãããã°ã©ã ãçµãã£ã¦ããæ¥åããã¦ãããå¿ è¦ãªãã¨ã¯æããªãã¯ããªãã§ããã¢ã«ã´ãªãºã ãããªããã£ã¦ãã人ããã£ã¦ãæ¥åã¯ããã°ã©ãã³ã°ãããªãããããªãã®ãã¨æã£ããããããã§ãã ã§ãnoritunaããããã³ã¼ãã¼ããæãã¦ã¦ãããããæèã§ããåºããã ãã©ãããã¯ã¡ãã£ã¨éåæãã£ã¦ããã³ã¼ãã¼ãã¯èª°ããæ¸ããããã°ã©ã ãã³ã³ãã¥ã¼ã¿ã«å ¥åããã ããããã®èªæã§ãå¥ã«ãããã°ã©ããã¨ããè·ç¨®ãå¿ è¦ã«ãªããµãã¼ãçæ¥ç¨®ã§ãã§ãå®éã¯ãããã°ã©ã
ããã¯ãªãã§ããï¼ å¥¥ææ´å½¦æ°ã®èæ¸ãCè¨èªã«ããææ°ã¢ã«ã´ãªãºã äºå ¸ããPythonã§ãããã¨æ±ºæãRubyã«ç¿»è¨³ããã¦ããã®ã§ãPythonã§ããã£ã¦ã¿ããã¨ãã§ãå®ã¯æ¸ç±ã¯ãã£ã¦ããªãã¦Cã¨Rubyã®ã½ã¼ã¹ãè¦ã¤ã¤ç¿»è¨³ãã¦ãã¾ããï¼æ¥ï¼åãã¼ã¹ã§é²ãã§ãã¾ãã ãã£ã¦ãããã¡ã«ãã®æ¬ã欲ãããªã£ã¦ãã¾ããã å人ã®Pythonåãé«ããããã«å§ãã¾ããã®ã§ãééããå«ã¾ãã¦ããããããã¾ããããææçãããã¾ãããé£çµ¡[syobosyobo at gmail dot com]ãã ããã ã¡ãã£ã¨æ¹éãããã¦ãctopyã§è¨³ããã¨ã«ãããã¾ãã¾ãæ¹éãããã¦ãããctopyã¯ãã¾ãã¤ãããªããã¡ãã£ã¨ããã£ã¦ãããªãã¨ãåºåããããªããã³ã¡ã³ãã¨ãå ¥ã£ã¦ãã¨ããã¾ãå¤æãã¦ãããªããã ã§ããã®ãã¨Pythonãããæ¸ãæ¹ã§æ¸ãã¦ãããããã¨ãã©ããªãããããã¾ãããã
ãã®è¨äºã¯ Competitive Programming Advent Calendar ã®ããã«ä½æããã¾ããã ãDP (Dynamic Programminng: åçè¨ç»æ³) ãããåãããªããã¨ããã¤ã¶ãããããç®ã«ãã¾ããä½ããä½ã¾ã§åãããªãã¨ããããã§ã¯ãªããã©ã ãããããDPãããã°è§£ããããã¨èª¬æãããã°ç解ã§ãããã©ãä¸ãããããæãä»ããªã ã¡ã¢å帰ã ã¨æ¸ãããã©ã«ã¼ãã ã¨æ¸ããªããã¾ãã¯ãã®é ã¨ãããã ãã®è¨äºã¯ãDPã¨ããææ³ãããæ·±ãç解ããæå©ãããããã¨ãç®çã¨ãã¦æ¸ããã¦ãã¾ãããããèªãã°ã©ããªDPã®åé¡ããããã解ããã»ã»ã»ãã¨ã¯ãªãã¨æãã¾ãããããã¾ãæ©ã¾ãã«å®è£ ã§ããããã«ãªããããã®å¹æã¯ããããããªãããªã¨æãã¾ããæ³å®ããèªè 層ã¯ãç°¡åãªDPã®åé¡ãããã¤ã解ãããã¨ããããTopCoderã¬ã¼ãã£ã³ã° 1500 æªæºãããã®äººã¨
ã¯ã¦ãªã°ã«ã¼ãã®çµäºæ¥ã2020å¹´1æ31æ¥(é)ã«æ±ºå®ãã¾ãã 以ä¸ã®ã¨ã³ããªã®éããä»å¹´æ«ãç®å¦ã«ã¯ã¦ãªã°ã«ã¼ããçµäºäºå®ã§ããæ¨ããç¥ãããã¦ããã¾ããã 2019å¹´æ«ãç®å¦ã«ãã¯ã¦ãªã°ã«ã¼ãã®æä¾ãçµäºããäºå®ã§ã - ã¯ã¦ãªã°ã«ã¼ãæ¥è¨ ãã®ãã³ãæ£å¼ã«çµäºæ¥ã決å®ãããã¾ããã®ã§ã以ä¸ã®éãã確èªãã ããã çµäºæ¥: 2020å¹´1æ31æ¥(é) ã¨ã¯ã¹ãã¼ãå¸æç³è«æé:2020å¹´1æ31æ¥(é) çµäºæ¥ä»¥éã¯ãã¯ã¦ãªã°ã«ã¼ãã®é²è¦§ããã³æ稿ã¯è¡ãã¾ãããæ¥è¨ã®ã¨ã¯ã¹ãã¼ããå¿ è¦ãªæ¹ã¯ä»¥ä¸ã®è¨äºã«ãããã£ã¦æç¶ãããã¦ãã ããã ã¯ã¦ãªã°ã«ã¼ãã«æ稿ãããæ¥è¨ãã¼ã¿ã®ã¨ã¯ã¹ãã¼ãã«ã¤ã㦠- ã¯ã¦ãªã°ã«ã¼ãæ¥è¨ ãå©ç¨ã®ã¿ãªãã¾ã«ã¯ãè¿·æãããããããã¾ãããã©ãããããããé¡ããããã¾ãã 2020-06-25 è¿½è¨ ã¯ã¦ãªã°ã«ã¼ãæ¥è¨ã®ã¨ã¯ã¹ãã¼ããã¼ã¿ã¯2020å¹´2æ28
ã©ã³ãã³ã°
ãç¥ãã
ã©ã³ãã³ã°
ãªãªã¼ã¹ãé害æ å ±ãªã©ã®ãµã¼ãã¹ã®ãç¥ãã
ææ°ã®äººæ°ã¨ã³ããªã¼ã®é ä¿¡
å¦çãå®è¡ä¸ã§ã
j次ã®ããã¯ãã¼ã¯
kåã®ããã¯ãã¼ã¯
lãã¨ã§èªã
eã³ã¡ã³ãä¸è¦§ãéã
oãã¼ã¸ãéã
{{#tags}}- {{label}}
{{/tags}}