ã¯ãã¯ãããã»R&Dã¤ã³ã¿ã¼ã³ã·ãã MLOpsã®è¬ç¾©è³æ ã³ã¼ãã®å ´æã¯ä»¥ä¸ https://github.com/chie8842/cookpad-internship-mlops-2018
ã¯ãã¯ãããã»R&Dã¤ã³ã¿ã¼ã³ã·ãã MLOpsã®è¬ç¾©è³æ ã³ã¼ãã®å ´æã¯ä»¥ä¸ https://github.com/chie8842/cookpad-internship-mlops-2018
ãã¦ãæ¹ãã¦ä»åã®ç®çã確èªãã¦ããã¨ãæ©æ¢°å¦ç¿ã使ã£ã¦æ±äº¬é½23åºã®ãè²·ãå¾è³è²¸ç©ä»¶ãçºè¦ããããã¨ãããã®ã§ããååã¾ã§ã®è¨äºã§ããè²·ãå¾è³è²¸ç©ä»¶ãçºè¦ããããã®ãã¼ã¿ãåéããåæã«ãããããããåå¦çãã¦ãã¾ããã www.analyze-world.com www.analyze-world.com ä»åã®è¨äºã§ã¯ãããããæ©æ¢°å¦ç¿ã使ã£ã¦åæãã¦ããã¾ããããååã¾ã§ã¯Pythonã使ã£ã¦ãã¾ãããããã®åæã§ã¯Rãç¨ãã¦ãã¾ãããªããã³ã¼ãã¯GitHubï¼https://github.com/ShoKosaka/Suumoï¼ã«ä¸ãã¦ããã¾ãã®ã§èå³ããæ¹ã¯åç §ãã ããã æåã«ããã¼ã¿ã®ä¸èº«ããã£ããè¦ã¦ããã¾ããå ·ä½çã«ã¯ãåæã®ãã¼ã«ãªããã¤ã³ããã°ã©ãã«ããªãããè³è²¸ç©ä»¶ã®ç¾ç¶ãå¤æ°å士ã®é¢ä¿æ§ãææ¡ãã¦ããã¾ãã ãã¼ã¿æ¢ç´¢ ã¾ãã23åºã®ä¸ã§ã©ããç©ä»¶æ°ãå¤ãã®ãã
æçµæ´æ°æ¥ï¼ 2019å¹´7æ10æ¥ å·¥å¦é¨å¥³å大çã®ranranã§ãã ç§ã¯å½¼æ°ã®ãã¨ã大好ãã§ããã¤ãå½¼æ°ã®ãã¨ã°ããèãã¦ãã¾ãããã¡ãããå°æ¥çã«ã¯å½¼æ°ã®ã奥ãããã¸ã¨ææ ¼ãããã¨èãã¦ãã¾ãããããããã®ã¾ã¾æéã®æµãã«èº«ãä»»ãã¦ãã¦ãã°ãèªç¶ã¨ã彼女ãããã奥ãããã«ãªããã®ã§ããããï¼ é常ã«ä¸å®ã§ãã
ç 究éçºé¨ã®èç°ï¼@yohei_kikutaï¼ã§ããæ©æ¢°å¦ç¿ãæ´»ç¨ããæ°è¦ãµã¼ãã¹ã®ç 究éçºï¼ä¸»ã¨ãã¦ç»ååæç³»ï¼ã«åãçµãã§ãã¾ãã æè¿èªãã è«æã§é¢ç½ãã£ããã®ãï¼ã¤æããã¨è¨ãããã以ä¸ãæãã¾ãã Poincaré Embeddings for Learning Hierarchical Representations Training Group Orthogonal Neural Networks with Privileged Information Fluctuation Theorem for Many-Body Pure Quantum States ã¯ãã¯ãããã®ã¢ããªã«ã¯ãæçããããã¨ããæ©è½ãããã¾ãã æºå¸¯ç«¯æ«ããæçç»åã®ã¿ãæ½åºãã¦è¡¨ç¤ºãããã¨ã§èªåãé£ã¹ããã®ãæ¯ãè¿ããããã«ãªã£ã¦ãããããããã¬ã·ãæ稿ãã¤ããã½ãéããã¨ãã§ããããã«ãªã£ã¦ãã¾ã
ãã®ï¼äººã®ç¾å°å¥³ãã£ã©ã®ãã¡ã ï¼ã¤ã¯ã ãã³ã³ãã¥ã¼ã¿ã§èªåçæããããã® ï¼ã¤ã ã ã人ã®æã§æããããã®ãã§ãã ã©ããã人ã®æã§æããããã®ãããå¤ãã¾ããï¼ ï¼çãã¯ä¸ããã«ããã¾ãï¼ ï¼ï¼ï¼ï¼ï¼ï¼ï¼ï¼ï¼ï¼ï¼ï¼ ç¾å°å¥³ãã£ã©ã¯ã¿ã¼ãã³ã³ãã¥ã¼ã¿ãèªåçæãã¦ããããµã¤ããããã¾ãã make.girls.moe 製ä½è twitter: Aixile@MakeGirlsMoe (@namaniku0) | Twitter ï¼ãµã¤ãã®ä½¿ãæ¹ã®è©³ç´°ãªã©ã¯ä¸è¨ãµã¤ããåèã«ãªãã¾ãï¼ 1ã¯ãªãã¯ã§å«ããã³ãã³çã¾ãããµã¼ãã¹ãç»å ´ 深層å¦ç¿ã§èããã£ã©ãèªåçæ - ãã¨ãã¼ ã¾ããã©ããã£ã¦ä½ã£ã¦ãããã®è§£èª¬è«æãå ¬éããã¦ãã¾ãï¼è±æï¼ ï¼ã©ãããGetchu.comãã®ãµã ãã¤ã«ãå¦ç¿ããã¦ç»åå¦çãã¦ããã£ã½ãã§ããã»ã»ï¼ ä½ãèããï¼ã¯ãªãã¯ã§ããã®ã¬ãã«ã®ç¾å°å¥³ç»åãç¡éã«åº
ç 究éçºé¨ã®èç°ï¼@yohei_kikutaï¼ã§ããæ©æ¢°å¦ç¿ãæ´»ç¨ããæ°è¦ãµã¼ãã¹ã®ç 究éçºï¼ä¸»ã¨ãã¦ç»ååæç³»ï¼ã«åãçµãã§ãã¾ãã æè¿èªãã è«æã§é¢ç½ãã£ããã®ãï¼ã¤æããã¨è¨ãããã以ä¸ãæãã¾ãã Why does deep and cheap learning work so well? Universal adversarial perturbations Understanding deep learning requires rethinking generalization 以åæ¬ããã°ã§ç´¹ä»ãã Hackarade: MRI Internal Challenge ã§ããããã®ç¬¬äºåã¨ãã¦æ©æ¢°å¦ç¿ãé¡æã«ããããã«ã½ã³ãä¸ææ«ã«éå¬ããã¾ããã Hackarade ã§ã¯ã¨ã³ã¸ãã¢ã«ã¨ã£ã¦é·æçã«æçã¨ãªãæè¡ãé¡æã«ãããã¨ããæ³ããããã¾ãã ä»åã¯ã¯ãã¯ãããã®ç 究
æ©æ¢°å¦ç¿ã®åãçµã¿ã次ã ã¨å®è£ ï¼Â ã¯ãã¯ãããã®âå³æ¦åâæ°åã¨ã³ã¸ãã¢ãæ´»èºã§ããèæ¯ã¨ã¯ ãè¥æã¨ã³ã¸ãã¢ãã©ããªæ´»èºãã¦ã¾ããï¼ã第5åã¯ãæ¥æ¬æ大ã®æçã¬ã·ããµã¼ãã¹ãéå¶ããã¯ãã¯ãããç·¨ãçºè¶³ããéããªãç 究éçºé¨ã§ãæ©æ¢°å¦ç¿ã®éçºåºç¤ããå®ãµã¼ãã¹ã¸ã®çµã¿å ¥ãã¾ã§ãæ å½ããæ°åã¨ã³ã¸ãã¢ããå ¥ç¤¾å¾ããã«ç¬¬ä¸ç·ã§æ´»èºã§ããèæ¯ã詳ãã伺ãã¾ããã è¥æã¨ã³ã¸ãã¢ã®ããã®æ å ±ã¡ãã£ã¢ãã¨ã³ã¸ãã¢Hubããé£è¼ãè¥æã¨ã³ã¸ãã¢ãã©ããªæ´»èºãã¦ã¾ããï¼ã第5åã¯ãæ¥æ¬æ大ã®æçã¬ã·ããµã¼ãã¹ãéå¶ããã¯ãã¯ãããç·¨ã§ãã 2016å¹´7æã«çºè¶³ããã¯ãã¯ãããã®ç 究éçºé¨ã§ãæ©æ¢°å¦ç¿ã®éçºåºç¤ããå®ãµã¼ãã¹ã¸ã®çµã¿å ¥ãã¾ã§ãæ å½ããã®ã¯ãæ°åå ¥ç¤¾1å¹´ç®ã®æè°·æ ä¸éï¼ãããã»ãããã¡ããï¼ããã§ãããã¡ã³ã¿ã¼å½¹ã§ããé¨é·ã®å島ç´ï¼ã¯ããã¾ã»ãã ãï¼ããã¯ãããã°ã©ãã³ã°ã«é¢ãã¦ã¯æè°·ãã
ã¯ããã¾ãã¦ã æ¬æ¥ã¯ã¢ã¹ãã¼ã¢ã¼ã (以ä¸AA) è·äººã®OsciiArtã¨ããã¾ã (æ¬æ¥ã§ã¯ãªã)ã AlphaGo対ã¤ã»ã»ãã«ã®å¯¾å±ãè¦ã¦ããåããã£ã¼ãã©ã¼ãã³ã°ã§ç¥AAè·äººãåãããï¼ãã¨æããpythonãã¤ã³ã¹ãã¼ã«ãã¦ã¡ããã©ä¸å¹´ã®ææãæ¸ãã¦ããã¾ãã ã³ã¼ãã¯ãã¡ãã«ã¢ãããã¦ããã¾ãã https://github.com/OsciiArt/DeepAA ããã§æ±ãã¢ã¹ãã¼ã¢ã¼ãã¨ã¯ ããã§æ±ãAAã¨ã¯ã ããããã®â¦â¦â ã§ã¯ãªããããããã®â¦â¦â ã§ããªããããããã®â¦â¦â ã¨ãã¡ãã£ã¨éã£ã¦ãããããã®â¦â¦â ã§ã¯ãã¡ãããªããããããã®ã§ããâ ãã®ãããªãç·ç»ãæåãä½ã£ã¦åç¾ããããã¬ã¼ã¹AAãã¨å¼ã°ããã¿ã¤ãã®AAãããã§ã¯æ±ãã¾ãã 詳細ã¯wikipediaã®ãã¢ã¹ãã¼ã¢ã¼ããã®ãã¼ã¸ã®ããããã¼ã·ã§ãã«ãã©ã³ããã®é ãåç §ãã¦ãã ããã wikipe
ã¢ãã«ããªã¼ç³»ã®æ·±å±¤å¼·åå¦ç¿ã®ææ³ãç¨ãã¦ã¹ããã©DXã®ã²ã¼ã AIãä½ã£ãã¨ããè«æãåºã¦ããã®ã§èªãã ã以ä¸ã¯ãã®ã¡ã¢ã æ¦è¦ è«æURL : https://arxiv.org/abs/1702.06230 èè ã®ã°ã«ã¼ã㯠github ã§ã³ã¼ããå ¬éãã¦ããããã®ãã¢åç»ã twitch ã youtube ã«ä¸ãã£ã¦ããã www.youtube.com ä¸ã®åç»ã¯ãã®ä¸ä¾ãæè¨ããã¦ããªãããåãããã㦠2P ã®ãã£ããã³ã»ãã¡ã«ã³ã³ãå¼·åå¦ç¿ AI ã§ã1P ã人éã ã¨æããããã¹ããã©ã®ç´ 人ãè¦ã¦ããã¾ããã³ã¨æ¥ãªãã®ã ãã人éå´ã¯ä¸çã©ã³ãã³ã°ã§ããã50ç¸å½ã®ãã¬ã¤ã¤ã¼(äºäººãã¦ãéä¸ã§äº¤ä»£ãã¦ãã)ãããã reddit ã hacker news ã§ãæ´»çºã«è°è«ããã¦ãã模æ§ã å 容 ç°å¢ã®å®ç¾©ã«ã¤ã㦠Atari ã®ã²ã¼ã ç°å¢ãªã©ã¨ã¯ç°ãªããç»åã§ã¯ãªãã¨ãã¥ã¬
ããæè¿ãGoogle翻訳ããªãã¥ã¼ã¢ã«ãããæ§è½ãåä¸ããã¨ãã話ãæµãã¦ããã®ã§ããã£ãã試ãã¦ã¿ãã ã¼ããçã£å ã«è©¦ããã®ã¯ããæ¯ã¯ãç¶ãèªçæ¥ãå¿ããã®ã§ãæã£ã¦ããããã ã ãªããã®æãæ°ã«ããã£ã¦ãããã¯å¾è¿°ããã çµæã¯æ¬¡ã®éãã "My mother is angry because my father forgot her birthday." ãã°ãããã ã§ã¯ããæ¯ã¯ãç¶ãéãå¿ããã®ã§ãæã£ã¦ããããã¯ã©ãã ãããã "My mother is angry because my father forgot his bag." å®ç§ã ï¼ ãèªçæ¥ãå¿ãããã®å ´åã¯ãæ¯ã®èªçæ¥ãã¨è§£éãããéãå¿ãããã®å ´åã¯ãç¶ã®éãã¨è§£éããã ãããããå©ç¨è ã翻訳ã«æ±ãããã®ãããªãã ãããã ããããããã¾ã§ã ã£ãã 次ã«ã¼ãã¯ããç¶ãã¨ãæ¯ããå ¥ãæ¿ãããç¶ã¯ãæ¯ãèªçæ¥
ããã«ã¡ã¯ãã¼ã¸ã¿ãã§ãã å æ¥ã¯ãã±ã¢ã³ã®åä½å¤å¤å¥ã®è¨äºãæ¸ããããã¤ã¦ãªãã»ã©ããºã£ã¦é©ãã¾ããã ä»ã§ã¯ãã¹ã¯ãªã¼ã³ã·ã§ãããæ®ã£ããã常é§ãã¦ã²ã¼ã ç»é¢ã«è¢«ããã¿ã¤ãã®åä½å¤ãã§ãã«ã¼ã¢ããªãããããåºã¦ãã¦ãã®ã§ãå度å¨å¢ã¯æ¶ãå»ã£ãããã§ãã 被ããã¿ã¤ãã¯ã¨ã¦ã便å©ã§ä½¿ã£ã¦ããã®ã§ãããåºæ¬çã«å ¥åã¯å ¨ã¦èªåã§è¡ãå¿ è¦ããããå°ãé¢åã§ãã ã³ã³ãã¥ã¼ã¿ãã¸ã§ã³ç 究è è¦ç¿ãã¨ãã¦ã¯ãå ¨ã¦ãã¼ã«ã«ã®ç»åèªèã§è¡ããããã¨ããã§ãã ããã§æå§ãã«ããã±ã¢ã³ã®ç¨®é¡ãç»åèªèã§å¤å¥ããããã«ãã±ã¢ã³ãã¼ã¿ã»ãããä½ã£ãã®ã§ãããå¯ãéãã¦ãã±ã¢ã³ããå¦æªãã§ãã¦ãã¾ã£ãã®ã§ããã®ã話ã§ãã ãã±ã¢ã³ãã¼ã¿ã»ããã®ä½æ æ©æ¢°å¦ç¿ã§ã¯ã©ã¹åé¡ãè¡ãããã®ããã«ã¯ããã®ãã¡ã¤ã³ã®ãã¼ã¿ã»ãããå¿ è¦ã§ãã 以åãããæ¾ãããè¦åããæã6000æå¼±ã®ãã¼ã¿ã»ãããã¹ã¯ãªã¼ã³ã·ã§ããããã
Appleã¯ãé·å¹´ãèªç¤¾è£½åã«æ©æ¢°å¦ç¿ã使ã£ã¦ãã¾ããä¾ãã°ãSiriã¯ãããªãã®è³ªåã«çãã楽ãã¾ãã¦ããã¾ããiPhotoã¯ãåçã®ä¸ã®é¡ãèªèãã¾ããã¡ã¼ã«ã¢ããªã¯ãã¹ãã ã¡ãã»ã¼ã¸ãæ¤ç¥ãã¾ããã¢ããªéçºè ãªãã é¡èªè¨¼ ã®ããã«Appleã®APIã§å ¬éããã¦ããæ©è½ã®å¹¾ã¤ããå©ç¨ã§ãã¾ããiOS 10ããå§ãã¦ãé³å£°èªèãSiriKitç¨ã®ãã¤ã¬ãã«APIãå ¥æãã¾ãããã æã ããã©ãããã©ã¼ã ã«å èµããã¦ããAPIã®çãé åãè¶ ãã¦ãç¬èªã®ãã®ãä½ãããã¨æããã¨ãããã§ããããå¤ãã®å ´åã¯æ©æ¢°å¦ç¿ãå§åããã¾ããããã®éãããããã®æ¢æã®ã©ã¤ãã©ãªã®ãã¡ã®1ã¤ã使ã£ãããé«éè¨ç®è½åãæã¤AccelerateãMetalã®ä¸ã«ç´æ¥çµã¿ä¸ããããã¦å®ç¾ãã¾ãã ä¾ãã°ãç§ã®ååãæ§ç¯ãããªãã£ã¹å ¥å®¤ã·ã¹ãã ã¯ãiPadã使ã£ã¦é¡èªè¨¼ãè¡ããSlackã«GIFç»åãæ稿ãã¦ãã¦
ã¦ã§ãã«ã¯SEOã®æ å ±ã氾濫ãã¦ãããããããã©ããæ£ããã®ãã¯ããã¾ãã¡ããããªããæè¿ã§ã¯ãè¯è³ªãªã³ã³ãã³ããæä¾ããã®ãä¸çªã®SEO対çãã¨ããè«èª¿ã主æµã«ãªã£ã¦ããããä¸æ¹ã§SEOã®ãã¯ããã¯ãã·ã§ã¢ãããæ§åãã¾ã è¦ãããã è¯è³ªãªã³ã³ãã³ããæä¾ããã°ãSEOã®å¯¾çã¯ããªãã¦ãããã®ï¼ãä¸ä½ãæ£ããSEOã£ã¦ä½ï¼ããããªç´ æ´ãªçåããæ ªå¼ä¼ç¤¾so.la代表ã§SEOå°é家ã®è¾»æ£æµ©ããã«ã¶ã¤ãã¦ã¿ãã è¾»ããã¯æ®æ®µããTwitterãããã°ãªã©ã§SEOæ å ±ãçºä¿¡ãã¦ãããæ¥æ¬ã§ãããªãããå ¨æ¤ç´¢ã®ãã¡ç´2.5ï¼ ã¯ãè¾»ãããä»äºã§é¢ãããµã¤ããã¯ãªãã¯ããã¦ããã¨ã®ãã¨ã æè¿ã§ã¯æªè³ªãªSEOæ¥è ã¨ç±ãããã«ãç¹°ãåºãããã¨ãè¨æ¶ã«æ°ããã ãããªâSEOã®ãæè¦çªâã§ããè¾»ããã®è¿äºã¯ãä¸ã®ä¸ã®99ï¼ ã®ãµã¤ãã¯ãSEOãªãã¦èããªãã¦ãããããããªãã§ãããããã¨ãããã®ããã®çæ
By Jimmy Baikovicius ããã°ã©ãã¼ã®Ji-Sung Kimæ°ã36æéã®ããã«ã½ã³ã§ä½ãä¸ããã¨ããèªåã¸ã£ãºã¸ã§ãã¬ã¼ã¿ã¼ããdeepjazzãã§ããdeepjazzã¯Python製ã®ãã£ã¼ãã©ã¼ãã³ã°ã©ã¤ãã©ãªã§ãããKerasãã¨ãTheanoãã使ç¨ãã¦ä½ãä¸ãããã2層æ§é ã®ãLong short-term memory(LSTM)ãã§ãMIDIãã¡ã¤ã«(é³æºãã¼ã¿)ãä¸ããã¨é³æ¥½ãå¦ç¿ãã¦ãªãªã¸ãã«ã®ã¸ã£ãºãä½æ²ãã¦ããã¾ãã deepjazz: deep learning for jazz http://deepjazz.io/ ãdeepjazzãã¯ãGoogleã®ãAlphaGo(ã¢ã«ãã¡ç¢)ããIBMã®ãWATSONããªã©ã®ãããªã人工ç¥è½(AI)ã®ä¸ç¨®ã§ããGoogleã®ã¢ã«ãã¡ç¢ã¯å²ç¢ãæã¤è½åã«ç¹åããAIã§ãããdeepjazzã¯ãã®åã®éã
ããã¤ãåå¼·ããããã¨äººå·¥ç¥è½ï¼æ©æ¢°å¦ç¿ï¼ãã£ã¼ãã©ã¼ãã³ã°ï¼Deep Learningï¼ã¨ãã£ããããã¯ã®è¨äºã®è¦ã¤ãã¦ã¯ã¢ã¼ã«ã¤ããã¦ãããã®ã®ãçµå±2015å¹´ã¯ä½ä¸ã¤ãããã«çµãã£ã¦ãã¾ã£ãã®ã§ãã¨ã«ããä¸æ©ã§ã足ãè¸ã¿åºãã¹ããæ¬è³ªçãªç解çã¯ãã¦ãããã¨ã«ãã試ãã¦ã¿ãã¨ãããã¨ããã£ã¦ã¿ã¾ããã 試ããã®ã¯ãTensorFlowãChainerãCaffe ã¨ãã£ãæ©æ¢°å¦ç¿ããã³ãã£ã¼ãã©ã¼ãã³ã°ã®ä»£è¡¨çãªã©ã¤ãã©ãªï¼ãã¬ã¼ã ã¯ã¼ã¯3種ã¨ã2015å¹´ã«è©±é¡ã«ãªã£ããã£ã¼ãã©ã¼ãã³ã°ãå©ç¨ããã¢ããªã±ã¼ã·ã§ã³2種ï¼DeepDreamãchainer-goghï¼ã ï¼DeepDreamã§è©¦ããçµæç»åï¼ ã¿ã¤ãã«ã«åæ¥ã¨æ¸ãã¾ãããããã¨ãã°TensorFlowã¯ç°å¢æ§ç¯ã ããªã10åãããã°çµããã§ãããããChainerãªãã¦ã³ãã³ãä¸çºãªã®ã§5ç§ãããã§ããCaffeã¯åã¯ã
åºæ¬çã«ç«¶é¦¬ãªãã¦ããã¹ãã§ã¯ãªãã¨ç§ã¯æã£ã¦ãããè´å ã®åãåãå¤ãããã ãå®ããã«æ¯ã¹ãã°ã¾ã ã¾ãã ããããã§ãè³ãéã®20ï½30%ã¯è´å ã«åããããã¨ã«ãªãã*1 ãããä»åã¯ãã¡ãã£ã¨æãç«ã£ã¦ç«¶é¦¬ã®äºæ¸¬ããã£ã¦ã¿ããã¨ã«ããã çç±ã¯é¦¬å¸ã®å®ãã ãç§ã¯ç¾å¨ãè³ééãå°ãªã人éã§ãä¸å©ã«ãªããªãæè³å ãæ¢ãã¦ããã®ã ãã馬å¸ã®ä¸æ100åã¨ããå®ãã¯é åçã«æ ããæ ªã®å ´åã«ã¯ã©ããªå®ãæ ªã§ããæä½è³¼å ¥é¡ã¯æ°ä¸å以ä¸*2ãªã®ã§ãããç¨åº¦ã¾ã¨ã¾ã£ãè³éãå¿ è¦ã«ãªãã ã¾ãã競馬ã«ã¯æè¡ä»å ¥ã®ä½å°ï¼åªå次第ã§åå©ã§ããå¯è½æ§ï¼ãããã ä¾ãã°ãããªä¾ãããã ï¼ï¼ï¼ååããå²ãï¼è±æè³ä¼ç¤¾ãæ¥æ¬ã®ç«¶é¦¬ã§è稼ãããé©ãã®ææ³ - NAVER ã¾ã¨ã å½¼ãã¯çµ±è¨è§£æã«ãã£ã¦ç«¶é¦¬ã§åã£ã¦ããããã®æå¾ãé ãã¦ãããããããããããã¥ã¼ã¹ãåºãã¨ãããã¨ã¯ã解æè ã®è 次第ã§ã¯ç«¶é¦¬ã§åã¦ãå¯è½æ§ã
ã¯ãã¯ããããµãã¼ã¤ã³ã¿ã¼ã³ã·ãã2015
ãªãªã¼ã¹ãé害æ å ±ãªã©ã®ãµã¼ãã¹ã®ãç¥ãã
ææ°ã®äººæ°ã¨ã³ããªã¼ã®é ä¿¡
å¦çãå®è¡ä¸ã§ã
j次ã®ããã¯ãã¼ã¯
kåã®ããã¯ãã¼ã¯
lãã¨ã§èªã
eã³ã¡ã³ãä¸è¦§ãéã
oãã¼ã¸ãéã
{{#tags}}- {{label}}
{{/tags}}