ãã®è¨äºã§ãããã¨ã3è¡ã§ Pythonã®æ¨æºã©ã¤ãã©ãªã§ã§ãã並åå®è¡ããããããã¦ç·å½ããã§é度æ¯è¼ããã ã¦ã©ã¼ã¿ã¼ãã©ã¼ã«ãã£ã¼ãã§ãããããã®ä¸¦åå¦çã®å¦çæéã®ç¹å¾´ãå¯è¦åããã boto3ã®å®è¡ãã¢ãã«ã±ã¼ã¹ã«ãã¦ãã©ã®ä¸¦åå¦çãä¸çªæ©ãã®ãã調ã¹ãã ãã®è¨äºã®çµè«ãå ã« Python 3.12ããæ¬æ ¼çã«ä½¿ããããã«ãªã£ããµãã¤ã³ã¿ã¼ããªã¿ã¼ã¯ãCPUã§å®è¡ããå¦çã«ã¤ãã¦è¨ãã°ãå¾æ¥ã®ãµãããã»ã¹ãããé«é boto3ã®å®è¡ã¯ããµãã¤ã³ã¿ã¼ããªã¿ã¼ãããç½²åä»ãURLã®éåæå®è¡ã®ã»ããéã â S3ããã®10ãã¡ã¤ã«ã®åå¾ã§ããã°ãå®è¡æéã90%åæ¸ã§ãã¾ã â Bedrockã®3åå®è¡ã§ããã°ãå®è¡æéã60%åæ¸ã§ãã¾ã ä»å使ã£ãã½ã¼ã¹ã³ã¼ãã¯ãã¡ãã«ç½®ãã¦ãã¾ãã ãææã¡ã®ç°å¢ã§åå®è¡ã§ããããã«ãã¦ãã¾ãã®ã§ãæ°ã«ãªãæ¹ã¯ãã²ã ã©ããã¦ãã®è¨äºãæ¸ãã®
è¤æ°ã®ããã°ã©ã ã並åã«å®è¡ããã並è¡ããã°ã©ãã³ã°ãã¯ãå¦çé度ãé£èºçã«åä¸ãããæããããææ³ã§ãããã¿ã¹ã¯ç®¡çãããã»ã¹ç®¡çãã¹ã¬ãã管çãã¯ãããè¤éãªããã¿ã«ã¤ãã¦ã®å¹ åºãç¥èã¨ãã¯ããã¯ãå¿ è¦ã¨ãªãã¾ããæ¬æ¸ã¯Rustã¨Cã使ããCPUã®ã¢ãããã¯å½ä»¤ãã°ãªã¼ã³ã¹ã¬ãããã¢ã¯ã¿ã¼ã¢ãã«ãã½ããã¦ã§ã¢ã»ãã©ã³ã¶ã¯ã·ã§ãã«ã¡ã¢ãªãasync/awaitãªã©ã並è¡ããã°ã©ãã³ã°ã«é¢ããçè«çãªèæ¯ããå®è£ ã¾ã§ãç¶²ç¾ çã«æ±ãã¾ããã½ã¼ã¹ã³ã¼ãã¯Githubä¸ã§å ¬éãå®éã«åä½ããã½ã¼ã¹ã³ã¼ããåèã«ããªããèªã¿é²ãããã¾ãã
ã·ã³ãã«ãªè¨èªä»æ§ã¨æåã並è¡å¦çæ©è½ã§å¤ãã®ããã°ã©ãã®å¿ãæããGoè¨èªããã¾ã§ã¯ãµã¼ãã¼ãµã¤ãã§ã®ããã°ã©ãã³ã°ãã³ã³ãããã¼ã«ã®å®è£ è¨èªãªã©ããã¾ãã¾ãªåéã§æ´»ç¨ããã¦ãã¾ããæ¬æ¸ã¯ãGoã®ä¸¦è¡å¦çã®è¨è¨å²å¦ãè¨èªã®æ©è½ãã¾ãå®éã®ããã°ã©ãã³ã°ãã¯ããã¯ã並è¡å¦çã®ä½¿ãæ¹ãã·ã¹ãã ã«å°å ¥ããéã®ãã¹ããã©ã¯ãã£ã¹ã¨ãã¿ã¼ã³ããã®å é¨æ§é ã¾ã§ãç°¡æ½ã«ã¾ã¨ããæ¸ç±ã§ãã æ®æ®µããGoã§ããã°ã©ãã³ã°ããã¦ããããã°ã©ããã並è¡å¦çã«ã¤ãã¦å¦ç¿ãããããã°ã©ãããæ°ããªç¥èã身ã«ã¤ããã®ã«è¯ãä¸åã¨ãªãã§ãããã ï¼»æ¬æ¸ã®ãµãã¼ããªãã¸ããªï¼½ æ£èª¤è¡¨ ããã§ç´¹ä»ããæ£èª¤è¡¨ã«ã¯ãæ¸ç±çºè¡å¾ã«æ°ã¥ãã誤æ¤ãæ´æ°ãããæ å ±ãæ²è¼ãã¦ãã¾ãã以ä¸ã®ãªã¹ãã«è¨è¼ã®å¹´æã¯ãæ£èª¤è¡¨ãä½æããå¢å·æ¸ç±ãå°å·ããæã§ãããææã¡ã®æ¸ç±ã§ã¯ããã§ã«ä¿®æ£ãæ½ããã¦ããå ´åãããã¾ãã®ã§ãæ¸ç±æçµãã¼ã¸ã®å¥¥ä»
1. Introduction An important feature of transactional databases like SQLite is "atomic commit". Atomic commit means that either all database changes within a single transaction occur or none of them occur. With atomic commit, it is as if many different writes to different sections of the database file occur instantaneously and simultaneously. Real hardware serializes writes to mass storage, and wr
This page refers to the 3rd edition of Distributed Systems For this third edition of âDistributed Systems,â the material has been thoroughly revised and extended, integrating principles and paradigms into nine chapters: Introduction Architectures Processes Communication Naming Coordination Replication Fault tolerance Security A separation has been made between basic material and more specific subj
The document discusses the Ponylang programming language. It covers three main topics: 1) Concurrency in Ponylang uses the actor model or shared memory with synchronization to avoid data races and deadlocks. 2) Ponylang uses capabilities to safely share isolated or immutable state between actors. 3) The Ponylang runtime provides fast actors through techniques like message passing and a read/write
This GPU implementation of a high-quality, offline fluid solver was written in Summer 2013 as a personal exercise in GPGPU. My main goal here was to become more familiar with versatile GPU algorithms such as stream compaction, and at the same time apply them in an exciting, computation heavy setting. The solver is written in C++ and OpenGL 4. The project is available on github. The fluid simulatio
Weâre releasing highly-optimized GPU kernels for an underexplored class of neural network architectures: networks with block-sparse weights. Depending on the chosen sparsity, these kernels can run orders of magnitude faster than cuBLAS or cuSPARSE. Weâve used them to attain state-of-the-art results in text sentiment analysis and generative modeling of text and images. The development of model arch
Many of todayâs applications process large volumes of data. While GPU architectures have very fast HBM or GDDR memory, they have limited capacity. Making the most of GPU performance requires the data to be as close to the GPU as possible. This is especially important for applications that iterate over the same data multiple times or have a high flops/byte ratio. Many real-world codes have to selec
Deleted articles cannot be recovered. Draft of this article would be also deleted. Are you sure you want to delete this article? TL;DR; Eventual Consistencyã¨ãè¨ããªããã©ãããã£ã¨ã¾ã¨ããªä¸è²«æ§å®è£ ãã¦ããã¨ã¯ãããããã ããã¿ããªé©åãªååã使ãããã ãªããã®è¨äºãæ¸ãã®ã NoSQLã®æèã«ããã¦ã¹ã±ã¼ã©ããªãã£ã¨ã®ãã¬ã¼ããªãã§Eventual Consistencyã¨ããç¨èªã¯çµæ§ãªé »åº¦ã§åºã¦ããã ACIDã«å¯¾æãã¦BASE(Basicaly Avalilable, Soft state, Eventual consistency)ãªãã¦è¨èãåºã¦ããããCAPå®çã®ä¸ã®Aã¨Pã ã¨è¨ã£ã¦ã¿ãããåæ£ã·ã¹ãã ã®ã¹ã±ã¼ã©ããªã
大è¦æ¨¡ãªä¸¦åã³ã³ãã¥ã¼ã¿ãæ´»ç¨ããåæ£å¦ç¿ããã±ã¼ã¸ChainerMNã§ImageNetã®å¦ç¿ã15åã§å®äº æ ªå¼ä¼ç¤¾Preferred Networksï¼æ¬ç¤¾ï¼æ±äº¬é½å代ç°åºã代表åç· å½¹ç¤¾é·ï¼è¥¿å·å¾¹ãããªãã¡ã¼ããããã¯ã¼ã¯ã¹ã以ä¸ãPFNï¼ã¯ã大è¦æ¨¡ãªä¸¦åã³ã³ãã¥ã¼ã¿ãMN-1â»1ããæ´»ç¨ãã深層å¦ç¿ï¼ãã£ã¼ãã©ã¼ãã³ã°ï¼ã®å¦ç¿é度ã«ããã¦ä¸çæéãå®ç¾ãã¾ããã 深層å¦ç¿ã¢ãã«ã®ç²¾åº¦ãåä¸ããããããå¦ç¿ãã¼ã¿ã®ãµã¤ãºãã¢ãã«ã®ãã©ã¡ã¼ã¿æ°ãå¢å ããããã«ã¨ããªã£ã¦è¨ç®æéãå¢å¤§ãã¦ãã¾ãã1åã®å¦ç¿ã«æ°é±éããããã¨ãç¨ã§ã¯ããã¾ãããè¤æ°ã®ã³ã³ãã¥ã¼ã¿ãé£æºããã¦å¦ç¿ãé«éåãããã¨ã¯ãæ°ããªã¢ã¤ãã£ã¢ã®è©¦è¡é¯èª¤ãæ¤è¨¼ã«è¦ããæéãå§ç¸®ããç´ æ©ãç 究ææãããã¦ããããã«é常ã«éè¦ã§ãã ä¸æ¹ã§ãè¤æ°ã®ã³ã³ãã¥ã¼ã¿ã使ã£ã並ååæ£å¦ç¿ã«ããã¦ã¯ãé常ãGPUæ°ãå¢ããã»ã©ããããµ
ãªãªã¼ã¹ãé害æ å ±ãªã©ã®ãµã¼ãã¹ã®ãç¥ãã
ææ°ã®äººæ°ã¨ã³ããªã¼ã®é ä¿¡
å¦çãå®è¡ä¸ã§ã
j次ã®ããã¯ãã¼ã¯
kåã®ããã¯ãã¼ã¯
lãã¨ã§èªã
eã³ã¡ã³ãä¸è¦§ãéã
oãã¼ã¸ãéã
{{#tags}}- {{label}}
{{/tags}}