JJUG ナイトセミナー 2025/1 発表資料ã€

This is a guest post by Ankit Sirmorya. Ankit is working as a Machine Learning Lead/Sr. Machine Learning Engineer at Amazon and has led several machine-learning initiatives across the Amazon ecosystem. Ankit has been working on applying machine learning to solve ambiguous business problems and improve customer experience. For instance, he created a platform for experimenting with different hypothe
Skip to the content. List of resources on testing distributed systems curated by Andrey Satarin (@asatarin). If you are interested in my other stuff, check out talks page. For any questions or suggestions you can reach out to me on Twitter (@asatarin), Mastodon (https://discuss.systems/@asatarin) or LinkedIn. Table of Contents Overview of Testing Approaches Research Papers Bugs Testing Fault Toler
昨年ã®re:Invent 2019ã§ç™ºè¡¨ã•ã‚ŒãŸAmazon Builder's Libraryを一通りèªã‚“ã§ã¿ã¾ã—ãŸã€‚通勤電車ã§èªã‚“ã§ã„ãŸã®ã§ã™ãŒã€é€”ä¸ã§å†¬ä¼‘ã¿ã«çªå…¥ã—ã¦ã—ã¾ã„å°‘ã—時間ãŒã‹ã‹ã£ã¦ã—ã¾ã„ã¾ã—ãŸã€‚途ä¸ã§æ—¥æœ¬èªžã«ã‚‚対応ã—ã¦ã„ã‚‹ã“ã¨ã«æ°—付ã„ãŸã®ã§ã™ãŒã€æŠ˜è§’ãªã®ã§å…¨ã¦è‹±èªžã§èªã‚“ã§ã¿ã¾ã—ãŸã€‚ aws.amazon.com Amazonã«ãŠã‘る大è¦æ¨¡åˆ†æ•£ã‚·ã‚¹ãƒ†ãƒ ã®é–‹ç™ºã§å¾—られãŸãƒŽã‚¦ãƒã‚¦ãŒå…¬é–‹ã•ã‚Œã¦ã„ã‚‹ã®ã§ã™ãŒã€æ˜¨ä»Šãƒžã‚¤ã‚¯ãƒã‚µãƒ¼ãƒ“スã®æ™®åŠã‚‚ã‚ã‚Šã€Amazonã®ã‚ˆã†ãªè¦æ¨¡ã§ãªãã¨ã‚‚分散システムã«é–¢ã™ã‚‹ãƒŽã‚¦ãƒã‚¦ãŒé‡è¦ã«ãªã‚Šã¤ã¤ã‚ã‚Šã¾ã™ã€‚ã‚‚ã¡ã‚ã‚“AWSã®ã‚¤ãƒ³ãƒ•ãƒ©ã‚„è¦æ¨¡æ„Ÿã«ä¾å˜ã™ã‚‹éƒ¨åˆ†ã‚‚多々見られるもã®ã®ã€å¤§è¦æ¨¡ãªåˆ†æ•£ã‚·ã‚¹ãƒ†ãƒ ã‚’é‹ç”¨ã—ãŸä¸Šã§å¾—られる知見ã¨ã„ã†ã®ã¯å¾—難ã„ã‚‚ã®ã§ã™ã—ã€ä¸€èˆ¬è«–ã¨ã—ã¦å‚考ã«ãªã‚‹éƒ¨åˆ†ã‚‚多ãã€ã¨ã¦ã‚‚有用ãªã‚³ãƒ³ãƒ†ãƒ³ãƒ„ã ã¨æ€ã„ã¾ã™ã€‚ 全体を通ã—ã¦å…±é€šã—ã¦è¿°ã¹ã‚‰ã‚Œã¦ã„ãŸã®ã¯ä»¥ä¸‹ã®ã‚ˆã†
ã“ã®ã‚¨ãƒ³ãƒˆãƒªãƒ¼ã«ã¤ã„㦠ã“ã®ã‚¨ãƒ³ãƒˆãƒªãƒ¼ã‚’書ã始ã‚ãŸçµŒç·¯ã¯ä¸‹è¨˜ã«ã‚ã‚Šã¾ã™ã€‚ inductor.hatenablog.com 上記ã®ç†ç”±ã®é€šã‚Šã€ç›®çš„ã¯è«–文を翻訳ã™ã‚‹ã“ã¨ã ã‘ã§ã¯ãªãã€æœ€çµ‚çš„ã«ã“れをè¸ã¾ãˆã¦è‡ªåˆ†ã®è¦‹è§£ã‚’ã¤ã‚‰ã¤ã‚‰ã¨æ›¸ã„ã¦ã„ãã¨ã“ã‚ã«ã‚‚ã‚ã‚Šã¾ã™ã€‚ ãŠãらã一番時間ãŒã‹ã‹ã‚‹ã®ã¯ãã‚Œãªã®ã§ã€ä¸€æ—¦ã¯ç¿»è¨³ã‚’一通り終ãˆãŸä¸Šã§æ›´ã«é ‘å¼µã£ã¦ã„ãã¾ã™ã€‚ゆã£ãã‚ŠãŠå¾…ã¡ã„ãŸã ã‘ã‚Œã°ã¨æ€ã„ã¾ã™ï¼žï¼œ 1. Introduction(ã¾ãˆãŒã) BorgãŒå†…部的ã«å‘¼ã³å‡ºã™ã‚¯ãƒ©ã‚¹ã‚¿ãƒ¼ç®¡ç†ã‚·ã‚¹ãƒ†ãƒ ã¯ã€GoogleãŒå®Ÿè¡Œã™ã‚‹ã™ã¹ã¦ã®ã‚¢ãƒ—リケーションを許å¯ã€ã‚¹ã‚±ã‚¸ãƒ¥ãƒ¼ãƒ«ã€èµ·å‹•ã€å†èµ·å‹•ã€ãŠã‚ˆã³ç›£è¦–ã—ã¾ã™ã€‚ã“ã®è«–æ–‡ã§ã¯ãã®æ–¹æ³•ã‚’説明ã—ã¾ã™ã€‚ Borgã«ã¯3ã¤ã®ä¸»ãªåˆ©ç‚¹ãŒã‚ã‚Šã¾ã™ã€‚ リソース管ç†ã¨éšœå®³å‡¦ç†ã®è©³ç´°ã‚’éš ã™ãŸã‚ã€ãƒ¦ãƒ¼ã‚¶ãƒ¼ã¯ä»£ã‚ã‚Šã«ã‚¢ãƒ—リケーション開発ã«é›†ä¸ã§ãã¾ã™ã€‚ éžå¸¸ã«é«˜ã„ä¿¡é ¼æ€§ã¨å¯ç”¨æ€§ã§å‹•ä½œã—ã€åŒã˜ã“ã¨ã‚’è¡Œ
Consul ã®æ–‡è„ˆã§å‡ºã¦ã㟠Sidecar Proxy ãªã‚“ã‹ã¯ Sidecar Pattern ã« ã‚ã¦ã¯ã¾ã‚Šã¾ã™ã€‚ã¼ã自身ã€ã“ã®ã‚ãŸã‚Šã®çŸ¥è˜ãŒã‚ã¾ã‚Šãªã„ã®ã§ã€åˆæ©çš„ãªçŸ¥è˜ã‚’å¾—ãŸã„ã¨æ€ã„ã€ä»¥ä¸‹ã®è«–文をèªã‚“ã§ã¿ã¾ã—ãŸã€‚ Design patterns for container-based distributed systems. Google ãŒå‡ºã—ãŸã“ã®è«–æ–‡ã§ã¯ã€Container ãŒåˆ†æ•£ã‚·ã‚¹ãƒ†ãƒ ã«ãŠã‘るデザインパターンã«ã©ã†ä½ç½®ä»˜ã‘られã¦ã„ã£ã¦ã„ã‚‹ã®ã‹ã¨ã„ã†è©±ã¨ã€ ã“ã‚Œã¾ã§ã«å‡ºã¦ããŸãƒ‡ã‚¶ã‚¤ãƒ³ãƒ‘ターンを以下㮠3 ã¤ã®ç¨®é¡žã«åˆ†ã‘ã¦èª¬æ˜Žã—ã¦ã„ã¾ã™ã€‚ Single-container management patterns Single-node, multi-container application patterns Multi-node application pattern コ
Storage Reimagined for a Streaming World Pravega is about a new storage abstraction — a stream — for continuously generated and unbounded data. A Pravega stream stores unbounded parallel sequences of bytes in a durable, elastic and consistent manner while providing unbeatable performance and automatically tiering data to scale-out storage. Distributed messaging systems such as Kafka and Pulsar hav
Paxosã¨ã¯ä½•ã‹ 分散システムã®é‡‘å—å¡”ã¨ã‚‚呼ã°ã‚Œã€Leslie Lamport大先生ã®è¼ã‹ã—ã„æˆæžœã®ä¸€ã¤ã¨ã—ã¦çŸ¥ã‚‰ã‚Œã‚‹åˆ†æ•£åˆæ„アルゴリズムPaxos。 æ—¢å˜ã®è§£èª¬ 実ã¯ã™ã§ã«å˜åœ¨ã™ã‚‹Paxosã®è§£èª¬ã¯å……分ã«è³ªãŒé«˜ã„ Wikipediaã®é …ç›®ã«ã‚‚çµæ§‹é•·ã€…ã¨æ›¸ã‹ã‚Œã¦ã„ã¦ã€ã“れをèªã‚“ã§ç†è§£ã§ããŸäººã¯ã‚‚ã†åƒ•ã®è¨˜äº‹ã‚’èªã‚€å¿…è¦ã¯ãªã„。 åŒæ§˜ã«PFIã®ä¹…ä¿ç”°ã•ã‚“ã«ã‚ˆã‚‹è§£èª¬ã‚¹ãƒ©ã‚¤ãƒ‰ã‚‚ã‚ã‚Šã€ã“れも良ã書ã‘ã¦ã„ã‚‹ã—ã€ã“れをèªã‚“ã§ç†è§£ã§ããŸäººã‚‚ã“れ以上記事をèªã‚€å¿…è¦ã¯ãªã„。 minghaiæ°ã«ã‚ˆã‚‹ãƒ–ãƒã‚°è¨˜äº‹ã®ã“ã‚Œã¨ã‹ç‰¹ã«ã“ã£ã¡ãªã‚“ã‹ã¯ã‹ãªã‚Šç´å¾—æ„ŸãŒã‚ã‚Šã€ã“れらをèªã‚“ã§ç†è§£ã§ããŸäººã‚‚(ä¸ç•¥ï¼‰ tyonekuraæ°ã«ã‚ˆã‚‹ã‚¹ãƒ©ã‚¤ãƒ‰ã‚‚良ãã‹ã‘ã¦ã„ã¦(ä¸ç•¥) ã“ã®è¨˜äº‹ã¯ã“れらã®èª¬æ˜Žã«ç›®ã‚’通ã—ã¦ã‚‚ãªãŠç†è§£ã§ããªã‹ã£ãŸäººã€ã‚‚ã—ãã¯ã“れらã®èª¬æ˜Žã‚’ã“ã‚Œã‹ã‚‰èªã‚‚ã†ã¨æ€ã£ã¦ã„る人ã«å‘ã‘ã¦æ›¸ãã€Paxosアルゴリズムã®è©³ç´°ãªèª¬æ˜Žè‡ªä½“
2017 02 21 Today I had the good fortune of attending the 2017 Distributed Tracing Summit, with lots of rad folks from orgs like AWS/X-Ray, OpenZipkin, OpenTracing, Instana, Datadog, Librato, and many others I regret that I’m forgetting. At one point the discussion took a turn toward project scope and definitions. Should a tracing system also manage logging? What indeed is logging, when viewed thro
ã¡ã‚‡ã£ã¨ç™ºè¨€åŠ›ã®ã‚ã‚Šãã†ãªæ–¹ãŒãƒ†ã‚¯ãƒ‹ã‚«ãƒ«ã«èª¤ã‚Šã‚’書ã‹ã‚Œã¦ã„ãŸã®ã§ã€ã“ã“ã§ã²ã£ãã‚Šã¨è¨‚æ£ã—ã¦ãŠããŸã„。 ã“ã®ã‚¹ãƒ©ã‚¤ãƒ‰ã®43ページ目ã«ã€ The problem with Paxos-based algorithm is that replications are eventual consistent. ã¨ã€è‰²ä»˜ãæ–‡å—ã§å”調ã•ã‚Œã¦æ›¸ã‹ã‚Œã¦ã„る。ã“ã®ã‚¹ãƒ©ã‚¤ãƒ‰ã§ä¸»å¼µã—ãŸã„ã“ã¨ã®æœ¬ç‹ã§ã¯ãªã„ãŒã€Spannerã®æ€§èƒ½ãŒã‚ˆã„ã“ã¨ã¨ã¯é–¢ä¿‚ãŒãªãã€Paxosãªã©ã®ãƒ¬ãƒ—リケーションã¨ã€ãƒˆãƒ©ãƒ³ã‚¶ã‚¯ã‚·ãƒ§ãƒ³ã¨ã®é–¢ä¿‚ã§èª¤è§£ã‚’広ã‚ãã†ãªã®ã§æŒ‡æ‘˜ã—ã¦ãŠããŸã„。辻マサカリã¨è¨€ã£ã¦å·®ã—支ãˆãªã„ã ã‚ã†ã€‚ Paxosã¯Strongly consistentã§ã‚ã‚‹ã“ã¨ãŒMade Simpleã®è«–æ–‡ã§è¨¼æ˜Žã•ã‚Œã¦ã„る(Strongly consistentãŒä½•ã‹ã¯ã¾ãŸåˆ¥ã®æ©Ÿä¼šã«ã“ã“ã«æ›¸ã“ã†ã¨æ€ã†ï¼‰ã€‚ã¡ã‚‡ã£ã¨é•·ã„ãŒå¼•ç”¨ã—ã¦ãŠã“ã†ã€‚ T
enPiT(æ±å¤§ãƒ»æ±å·¥å¤§ï¼‰ã‚¯ãƒ©ã‚¦ãƒ‰ã‚·ã‚¹ãƒ†ãƒ 基礎 副題:分散システム基礎ã¨ã‚¯ãƒ©ã‚¦ãƒ‰ã§ã®æ´»ç”¨ 資料(2015年度版) 1コマ目å‰åŠï¼šã‚¤ãƒ³ãƒˆãƒ 1コマ目後åŠï¼šç›¸äº’接続ã®ä»•çµ„㿠( 付録 ) 2コマ目:基本的ãªè€ƒãˆæ–¹ ( 付録1 ・ 付録2 ) 3コマ目:定足数ã«ã‚ˆã‚‹ã‚¢ãƒ—ãƒãƒ¼ãƒ 4ã‚³ãƒžç›®ï¼šé †åºã¥ã‘ 5コマ目:クラウドサービスã®è¨è¨ˆæ€æƒ³ï¼ˆï¼‘) 6コマ目:クラウドサービスã®è¨è¨ˆæ€æƒ³ï¼ˆï¼’) 7コマ目:è°è«–・ã¾ã¨ã‚ 演習解ç”例(講義後ã«ã‚¢ãƒƒãƒ—ãƒãƒ¼ãƒ‰ï¼‰ レãƒãƒ¼ãƒˆèª²é¡Œ 講師 çŸ³å· å†¬æ¨¹ï¼ˆå›½ç«‹æƒ…å ±å¦ç ”究所) f-ishikawa@nii.ac.jp 評価 出å¸ãªã‚‰ã³ã«ãƒ¬ãƒãƒ¼ãƒˆï¼ˆ 10/6(ç«ï¼‰ã€†åˆ‡ )-->ã«ã‚ˆã‚Šè©•ä¾¡ã™ã‚‹ï¼Žãƒ¬ãƒãƒ¼ãƒˆè©³ç´°ã¯è³‡æ–™å‚照.)
下記ã¯ã‚¹ãƒ©ã‚¤ãƒ‰ã®è¬›æ¼”ã®æ›¸ã下ã—ã®ã‚ˆã†ã«ãªã£ã¦ã„ã‚‹ã®ã§ã€ã‚¹ãƒ©ã‚¤ãƒ‰ã ã‘見るんã˜ã‚ƒãªãã¦ã€ã‚¹ãƒ©ã‚¤ãƒ‰ã‚’見ãªãŒã‚‰æ–‡ç« ã‚’èªã¿é€²ã‚ãŸã„æ–¹å‘ã‘ã§ã™ã€‚ CRDTã¨ã¯ 今回ã¯ã€CRDTã¨ã„ã†ãƒ‡ãƒ¼ã‚¿æ§‹é€ ã«ã¤ã„ã¦ç´¹ä»‹ã—ã¾ã™ã€‚CRDTã¯ãã‚‚ãã‚‚2011å¹´ã«SSS(Stabilization, Safety, and Security of Distributed Systems)ã¨ã„ã†å›½éš›ä¼šè°ã§ã€INRIA(ãƒ•ãƒ©ãƒ³ã‚¹å›½ç«‹æƒ…å ±å¦è‡ªå‹•åˆ¶å¾¡ç ”究所)ã®Marc Shapiroåšå£«ã«ã‚ˆã£ã¦ç™ºè¡¨ã•ã‚ŒãŸã€æ¯”較的新ã—ã„モノã§ã™ã€‚ CRDTã¯"Conflict-free Replicated Data Type"ã®ç•¥ã§ã€æ—¥æœ¬èªžã§è¨€ã†ã¨ã€__コンフリクトã—ãªã„複製å¯èƒ½ãªãƒ‡ãƒ¼ã‚¿__ã¨ã„ã£ãŸæ„Ÿã˜ã§ã™ã€‚ CRDTã«ã¯å®Ÿç¾æ–¹æ³•ã«ã‚ˆã£ã¦ï¼’種類ã®å‘¼ã³æ–¹ãŒå˜åœ¨ã—ã¾ã™(ãã‚Œãžã‚Œã®ç•¥ã‚‚ã¾ãŸCRDTãªã®ã§ã‚„ã‚„ã“ã—ã„ã§ã™ãŒ)。 Commutative Re
「Distributed Computing: Principles, Algorithms, and Systemsã€ã®4ç« ãƒ¡ãƒ¢ãƒªãƒ€ãƒ³ãƒ—ã®ã‚ˆã†ã«ã€åˆ†æ•£ã‚·ã‚¹ãƒ†ãƒ 全体ã«å¯¾ã™ã‚‹ã€Œç¾åœ¨çŠ¶æ…‹ã€ã‚’å–å¾—ã™ã‚‹æ–¹æ³•ã«ã¤ã„㦠全コンピュータåŒæ™‚ã«å–ã‚‹ã“ã¨ã¯ã§ããªã„ã®ã§ã€åˆ†æ•£ãŒç‰™ã‚’剥ã Distributed Computing: Principles, Algorithms, and Systems 作者: Ajay D. Kshemkalyani,Mukesh Singhal出版社/メーカー: Cambridge University Press発売日: 2011/03/03メディア: ペーパーãƒãƒƒã‚¯ã“ã®å•†å“ã‚’å«ã‚€ãƒ–ãƒã‚°ã‚’見る Chapter4 Global state and snapshot recording algorithms 4.1 Introduction ã‚°ãƒãƒ¼ãƒãƒ«ãªçŠ¶æ…‹ã‚’å–å¾—ã§ãã‚‹ã¨ã€
å‰å›žã®è¨˜äº‹ã§ã¯ 分散システムã®ãƒ‡ã‚¶ã‚¤ãƒ³ãƒ‘ターンã¨éŠ˜æ‰“ã£ã¦ãŠããªãŒã‚‰ä¸¦åˆ—・並行システムã®åˆ†é‡Žã®è©±ã‹ã‚‰ã‚¯ãƒ©ã‚¦ãƒ‰ç’°å¢ƒã¸ã¨ã“ã˜ã¤ã‘る事を「分散システムã€ã¨å‘¼ã‚“ã 事。 システム全体を決定ã¥ã‘ã‚‹ã‚ã‘ã§ã‚‚ãªã„通信パターン上ã®é¸æŠžè‚¢ã®ä¸€éƒ¨ã‚’切り出ã—ã¦ã‚·ã‚¹ãƒ†ãƒ ã®æœ¬è³ªã®ã‚ˆã†ã«å‘¼ã‚“ã 事。 プãƒã‚°ãƒ©ãƒŸãƒ³ã‚°ãƒ¢ãƒ‡ãƒ«ã¨è¨€ã„ãªãŒã‚‰ãƒ—ãƒã‚°ãƒ©ãƒŸãƒ³ã‚°ãƒ¢ãƒ‡ãƒ«ã®è©±ãŒä¸€åˆ‡å‡ºãªã‹ã£ãŸäº‹ã€‚ ã®ã†ã¡ä¸€ç•ªä¸Šã«ã¤ã„ã¦ã—ã‹æ›¸ã‹ãªã‹ã£ãŸã®ã§æ¬¡ã«çœŸã‚“ä¸ã®é …ç›®ã«ã¤ã„ã¦ã®è©±ã‚’ã™ã‚‹ã€‚物事を分類ã™ã‚‹éš›ã®ä¸€èˆ¬è«–ã¨ã—ã¦ã¯ MECE ã§ã‚ã‚‹ã“ã¨ãŒå¥½ã¾ã‚Œã‚‹ãŒYahoo!ã®è¨˜äº‹ã¯ãƒ¬ã‚¤ãƒ¤ãƒ¼ã‚‚目的も様々ãªç‰©ã‚’一緒ããŸã«èªžã£ã¦ãŠã‚Šã€å–り繕ãŠã†ã«ã‚‚è°è«–ã®ç©ºé–“ãŒã‚ã‚„ãµã‚„ãªã®ã§ä½•ã«å¯¾ã—ã¦ç¶²ç¾…çš„ãªã®ã‹ã‚‚è°è«–ãŒã§ããªã„。「マスターやワーカーã¨ã„ã†ã®ã¯å½¹å‰²ã®è°è«–ã§ã‚り通信パターンã®è°è«–ã§ã¯ãªã„ã€ã€ŒProducer-Consumerã¯ãƒ‡ãƒ¼ã‚¿ãƒ•ãƒãƒ¼ã®ä¸€ç¨®ã¨å‘¼ã¹ãªã„ã®ã‹ï¼Ÿã€ã€Œãƒ‡ãƒ¼ã‚¿ãƒ•ãƒãƒ¼ã¯
Deleted articles cannot be recovered. Draft of this article would be also deleted. Are you sure you want to delete this article? 最近ã§ã¯çã—ãã‚‚ãªããªã£ãŸ"Quorum"ã¨ã„ã†è¨€è‘‰ã€‚Zookeeper, etcd, Serfã¨ã„ã£ãŸã‚¯ãƒ©ã‚¹ã‚¿ä¸ã§ãƒ‡ãƒ¼ã‚¿ã®ãƒ¬ãƒ—リケーションを行ã£ã¦ãれるよã†ãªãƒ„ールやã€Cassandra, Riakã¨ã„ã£ãŸåˆ†æ•£ãƒ‡ãƒ¼ã‚¿ãƒ™ãƒ¼ã‚¹(NoSQLç³»)ã®ã‚ˆã†ãªãƒ„ールã«ãŠã„ã¦ã‚‚ã€ãƒ‡ãƒ¼ã‚¿ã®è¤‡è£½ã«ä¸€è²«æ€§ã‚’æŒãŸã›ã‚‹ä»•çµ„ã¿ã¨ã—ã¦ã‚ˆãèžã‹ã‚Œã¾ã™ã€‚ ã—ã‹ã—ãªãŒã‚‰ã€å¤šãã®ã‚¹ãƒ©ã‚¤ãƒ‰ã‚„Webã®è¨˜äº‹ã‚’èªã‚“ã§ã‚‚ã€"Quorum"ã¨ã„ã†èªžãŒæ„味ã™ã‚‹ã¨ã“ã‚ã¯è¦ã™ã‚‹ã«ã€ŒéŽåŠæ•°ãƒŽãƒ¼ãƒ‰ã«ã‚ˆã‚‹å¤šæ•°æ±ºã€ã¨ã„ã†ã‚ˆã†ãªèª¬æ˜ŽãŒå¤šã„よã†ã«æ„Ÿã˜ã¦ã„ã¾ã—ãŸã€‚ ã«ã‚‚é–¢ã‚らãšã€"Quorum"ã¨å‘¼ã°ã‚Œ
Yahooã®æŠ€è¡“者ãŒæ›¸ã„ãŸãƒ–ãƒã‚° techblog.yahoo.co.jp ãŒæ‚ªã„æ–¹å‘ã«æœŸå¾…ã‚’è£åˆ‡ã£ã¦ãã‚ŒãŸã®ã«å¯¾ã—〠@kuenishi ã•ã‚“ãŒã¾ã¨ã¾ã£ãŸæ–‡ç« kuenishi.hatenadiary.jp を書ã„ã¦ã„ãŸã®ã§ã€åƒ•ã‚‚2番煎ã˜ãらã„ã§ã¾ã¨ã¾ã£ãŸæ–‡ç« を書ã。 始ã‚ã«æ–ã£ã¦ãŠãã¨ã€åˆ†æ•£ã‚·ã‚¹ãƒ†ãƒ ã¨ã„ã†ã®ã¯ã¾ã ã¾ã 事例を集ã‚ã¦ã„ãフェーズを抜ã‘ãã£ã¦ãŠã‚‰ãšã€ä½“系立ã£ãŸå¤§çµ±ä¸€ç†è«–çš„ãªåˆ†é¡žæ³•ã¯ç¢ºç«‹ã—ã¦ã„ãªã„。ã“ã“ã«æ›¸ãã®ã¯ã€ã“ã‚Œã¾ã§ã®åˆ†æ•£ã‚·ã‚¹ãƒ†ãƒ 事例やã“ã‚Œã‹ã‚‰ã®åˆ†æ•£ã‚·ã‚¹ãƒ†ãƒ 事例を分類ã—ã¦ã„ãéš›ã«ãã®æ€§è³ªã‚’カテゴライズã™ã‚‹ä¸€åŠ©ã¨ãªã‚Œã°è‰¯ã„ãªã€ç¨‹åº¦ã®æ–‡ç« ãªã®ã§ã‚ã¾ã‚ŠçœŸã«å—ã‘ãªã„ã§æ¬²ã—ã„。 ãªãœYahooã®è¨˜äº‹ãŒæœŸå¾…ã¯ãšã‚Œãªã®ã‹ 人ã«ã‚ˆã£ã¦æ„見ã¯ã‚ã‚‹ã¨ã¯æ€ã†ãŒã€å€‹äººçš„ã«æ„Ÿã˜ãŸã®ã¯ä»¥ä¸‹ã®ï¼“ã¤ã€‚ 分散システムã®ãƒ‡ã‚¶ã‚¤ãƒ³ãƒ‘ターンã¨éŠ˜æ‰“ã£ã¦ãŠããªãŒã‚‰ä¸¦åˆ—・並行システムã®åˆ†é‡Žã®è©±ã‹ã‚‰ã‚¯ãƒ©ã‚¦ãƒ‰ç’°å¢ƒã¸ã¨ã“ã˜
リリースã€éšœå®³æƒ…å ±ãªã©ã®ã‚µãƒ¼ãƒ“スã®ãŠçŸ¥ã‚‰ã›
最新ã®äººæ°—エントリーã®é…ä¿¡
処ç†ã‚’実行ä¸ã§ã™
j次ã®ãƒ–ックマーク
kå‰ã®ãƒ–ックマーク
lã‚ã¨ã§èªã‚€
eコメント一覧を開ã
oページを開ã
{{#tags}}- {{label}}
{{/tags}}