æ¾å°¾ã»å²©æ¾¤ç 究室主å¬ã®å ¬éè¬åº§ãå¤§è¦æ¨¡è¨èªã¢ãã« 2024ããéè¬ãã¾ã. åè¬ã叿ãããæ¹ã¯ä¸è¨ãã¼ã¸ãåèã«ãã¦ãã ãã. å¤§è¦æ¨¡è¨èªã¢ãã« 2024 ç³è¾¼ç· åâ more

The rise of artificial intelligence in recent years is grounded in the success of deep learning. Three major drivers caused the breakthrough of (deep) neural networks: the availability of huge amounts of training data, powerful computational infrastructure, and advances in academia. Thereby deep learning systems start to outperform not only classical methods, but also human benchmarks in various t
What is Torch? Torch is a scientific computing framework with wide support for machine learning algorithms that puts GPUs first. It is easy to use and efficient, thanks to an easy and fast scripting language, LuaJIT, and an underlying C/CUDA implementation. A summary of core features: a powerful N-dimensional array lots of routines for indexing, slicing, transposing, ⦠amazing interface to C, via
Chainerã«ããå¤å±¤ãã¼ã»ãããã³ã®å®è£ ï¼2015/10/5ï¼ã®ã¤ã¥ããä»åã¯Chainerã§ç³ã¿è¾¼ã¿ãã¥ã¼ã©ã«ãããã¯ã¼ã¯ï¼CNN:Convolutional Neural Networkï¼ãå®è£ ãããTheanoã«ããç³ã¿è¾¼ã¿ãã¥ã¼ã©ã«ãããã¯ã¼ã¯ã®å®è£ (1)ï¼2015/6/26ï¼ã§æ¸ããã®ã¨åãæ§é ãChainerã§è©¦ããã ããã¿ã¹ã¯ã¯ååã¨åããMNISTã ä»åã¯ãMNISTãã¼ã¿ã®åå¾ãè¨ç·´/ãã¹ãã®åå²ã«scikit-learnã®é¢æ°ã使ã£ã¦ã¿ãã Chainerã§ç³ã¿è¾¼ã¿ãããããã«ã¯ãè¨ç·´ãã¼ã¿ã®ç»åã»ãããï¼ããããããµã¤ãºããã£ã³ãã«æ°ãé«ããå¹ ï¼ã®4次å ãã³ã½ã«ã«å¤æããå¿ è¦ãããï¼ããã«æ¸ãã¦ããï¼ãä»åã¯ãã£ã³ãã«æ°ã1ãªã®ã§åç´ã«reshapeã§å¤å½¢ã§ããã 3ãã£ã³ãã«ã®ã«ã©ã¼ç»åã ã¨numpyã®transpose()ã§4次å ãã³ã½ã«ã«å¤æã§ããã¿ãã
from xchainer import NNmanager import numpy as np from chainer import FunctionSet, Variable, optimizers import chainer.functions as F from sklearn.base import ClassifierMixin # NNmanager NNmanager model optimizer lossFunction model chainer.FunctionSetoptimizer chainer.optimizerslossFunction chainer.functions chainer paramsparams epoch batchsize logging forward trimOutput forward trimOutput chain
å ¨è³ã¢ã¼ããã¯ãã£ã»ã¤ãã·ã¢ãã£ãå¯ä»£è¡¨ã®é«æ©ã§ãã å··ã§è©±é¡ã®TensorFlow(TF)ã®white paperã¨ã½ã¼ã¹è¦ã¾ãããã½ã¼ã¹ãè¦ã¾ããããwhitepaperãã¨ã¦ãããæ¸ãã¦ãã®ã§ããã ãã§å¤§ä½è¨è¨ãçè§£ã§ããããã«ãªã£ã¦ã¾ãã ã§ãçµè«ããã§ããããããããã¨ããããããããåºæ¥ã¦ã¾ãã ãã ãããããããã«ã¦ã§ã¢ã®ROSãªã©ãããã¯ãã¼ã¿è§£æã½ããã¦ã¨ã¢ã«è¿ããããã¨æ¯ã¹ãã¨BriCAã¯ããªãROSã«è¿ãã§ãã ä½ãéããã§ããï¼ãTFã¯å¤æ¬¡å é åï¼ãã³ã½ã«ï¼ã«å¯¾ããæä½ãå®ç¾©ããã«ã¼ãã«ï¼æ£ç¢ºã«è¨ãã¨æ½è±¡æä½ã®operationã«ãã©ã¡ã¼ã¿ãä¸ãã¦å ·ä½çãªè¨ç®æé ã«ããã®ãã«ã¼ãã«ï¼ãæåã°ã©ãã§è¡¨ãã¦ãã°ã©ãå ¨ä½ã§ãªãããã®ãã¼ã¿å¦çãã¤ãã©ã¤ã³ã表ç¾ãå®è¡ãã¾ãã ãã®å ´åã®ã°ã©ãã¯BriCAãROSã§ããã¨ããã®ãã¼ããã¢ã¸ã¥ã¼ã«ãçµåããèªç¥ã¢ã¼ãããããã
æ¬æ¸ã®æ¦è¦ 深層å¦ç¿ã¯ï¼2012å¹´ã«è¡ãããç»åèªèã®ã³ã³ããã£ã·ã§ã³ã§åªããæç¸¾ãåãï¼æ¥éã«æ³¨ç®ãããããã«ãªã£ãæ©æ¢°å¦ç¿ã®æè¡ã§ãï¼ æ¬æ¸ã¯ï¼2013å¹´5æã2014å¹´7æã®7åã«ããã人工ç¥è½å¦ä¼èªã§ã®é£è¼è§£èª¬ãDeepLearningï¼æ·±å±¤å¦ç¿ï¼ãã«å¤§å¹ ãªå çãè¡ãï¼ç´¢å¼ãªã©ã追å ãã¦æ¸ç±ã¨ãã¦ã¾ã¨ãããã®ã§ãï¼2015å¹´æç¹ã§ã®æ·±å±¤å¦ç¿ã«ã¤ãã¦ã®ã»ã¨ãã©ã®è©±é¡ã«ã¤ãã¦è§£èª¬ãã¦ãã¾ãï¼ åç« ã¯ç¬ç«ããèªã¿ç©ã¨ãªã£ã¦ããï¼ããããã®è©±é¡ã«ã¤ãã¦åå¥ã«ç¥ããã¨ãã§ãã¾ãï¼ä¸æ¹ã§ï¼ç´¢å¼ãå å®ããã¦ï¼æ·±å±¤å¦ç¿ã«é¢ããæ§ã ãªãã¼ã¯ã¼ãã«ã¤ãã¦èª¿ã¹ããã¨ãã§ããããã«ããã¾ããï¼ ä¸æ¹ã§ï¼å¤æ°ããæ·±å±¤å¦ç¿ã®ã½ããã¦ã§ã¢ãç¨ããæ¹æ³ã«ã¤ãã¦ã¯è¿°ã¹ã¦ãã¾ããï¼æ¬æ¸ã¯ãããã®ã½ããã¦ã§ã¢ã誤ç¨ããªãããã«ï¼æ·±å±¤å¦ç¿ã®åä½åçãç´¹ä»ãï¼åææ³ã®é©ç¨å¯è½ç¯å²ãç¥ã£ã¦ããã ãããã®ãã®ã§ãï¼ é¢é£æ å ±
ä¹ããããªããã®ããã°ã¦ã§ã¼ãã« Deep Learningï¼æ·±å±¤å¦ç¿ï¼ã«é¢é£ããã¾ã¨ããã¼ã¸ã¨ãã¦ä½¿ç¨ããäºå®ã§ããDeep Learningã«é¢ããè¨äºã»ã¹ã©ã¤ãã»è«æã»åç»ã»æ¸ç±ã¸ã®ãªã³ã¯ãã¾ã¨ãã¦ãã¾ããææ°ã®ç ç©¶ååã¯å ¨ç¶ææ¡ã§ãã¦ããªãã®ã§ä»å¾ç ç©¶ãé²ãããªãã§è¨é²ãã¦ããããã¨æãã¾ããèªãã è«æã®æ¦è¦ãç°¡åã«ã¾ã¨ãã¦ããäºå®ã§ããæ¬ããã°ã§ã¯ãå½é¢ã®éãTheanoã使ã£ã¦å種Deep Learningã¢ã«ã´ãªãºã ãå®è£ ãã¦ããããã¨æãã¾ãã é¢é£ãã¥ã¼ã¹ãªã©ã¯Twitterã§ãæµãã¦ããã®ã§èå³ããã£ãããã©ãã¼ãã¦ãã ããã ãã¹ã¦ã«ç®ãéããæ´æ°ã追ãã¤ãã¦ãã¾ãããç§ã®ã¯ã¦ãªããã¯ãã¼ã¯ã§[Deep Learning]ã¨ããã¿ã°ãä»ãã¦ç»é²ãã¦ãã¾ããã¾ã£ããæ´çã§ãã¦ãã¾ããããåèã¾ã§ã Theanoç·¨ TheanoãWindowsã«ã¤ã³ã¹ãã¼ã«ï¼2015/1
ã©ã³ãã³ã°
ã©ã³ãã³ã°
é害
ãªãªã¼ã¹ãé害æ å ±ãªã©ã®ãµã¼ãã¹ã®ãç¥ãã
ææ°ã®äººæ°ã¨ã³ããªã¼ã®é ä¿¡
å¦çãå®è¡ä¸ã§ã
j次ã®ããã¯ãã¼ã¯
kåã®ããã¯ãã¼ã¯
lãã¨ã§èªã
eã³ã¡ã³ãä¸è¦§ãéã
oãã¼ã¸ãéã
{{#tags}}- {{label}}
{{/tags}}