Suffix Trees Should automatically redirect to [here (click)] on a suitable browser.
æçµæ´æ°æ¥: 2002-09-18 (å ¬éæ¥: 2002-09-18) Unix Magazine èªã« 2002å¹´1æå·ãã 2003å¹´2æå·ã«ããã¦é£è¼ã ã¦ããè¨äºã®å ã®å稿ã§ãã ææ°ã«å¯ãã ãã¨ã¯å人ãè¡ãã®ãéä¾ã§ãããä¿¡ãããããã« ãå æ¸ã¯å¤§æµçµç¹ã«å¸°ããããã®ã§ããã -- Jon Bentley *1 å½¹ã«ç«ããªãã½ããã¦ã§ã¢ãä½ãã®ã好ãã ãé¢åãªä½æ¥ã楽ã«ã ã横çã½ããã¦ã§ã¢ããããããã¾ã«ã¯äººãåãããããã ããªã ã½ããã¦ã§ã¢ãä½ãã®ã楽ããã 以åã«ç§ãéçºãã cdbiff*2ã¨ããã½ãã ã¦ã§ã¢ã¯ãã¡ã¼ã«ãå±ã㨠PC ã® CD-ROMãã©ã¤ããéãã¦ã¡ã¼ã« ã®å°çãéç¥ããã¨ããå½¹ã«ç«ããªããã®ã§ãã£ããããã®ãã ã ãªããåãã¦äºæ³å¤ã®å¥½è©ãå¾ããä»åã¯ãããããå½¹ã«ç«ããªã ã½ããã¦ã§ã¢ã® 1ã¤ã§ãããå°ããããç«¯æ« chatty*3 ãç´¹ä»ããã
ãµã¼ãã¹çµäºã®ãç¥ãã ãã¤ãYahoo! JAPANã®ãµã¼ãã¹ããå©ç¨ããã ãèª ã«ãããã¨ããããã¾ãã ã客æ§ãã¢ã¯ã»ã¹ããããµã¼ãã¹ã¯æ¬æ¥ã¾ã§ã«ãµã¼ãã¹ãçµäºãããã¾ããã ä»å¾ã¨ãYahoo! JAPANã®ãµã¼ãã¹ããæ顧ãã ããã¾ãããããããããé¡ããããã¾ãã
PATRICIA - Practical Algorithm to Retrieve Information Coded in Alphanumeric, D.R.Morrison (1968). A PATRICIA tree is related to a Trie. The problem with Tries is that when the set of keys is sparse, i.e. when the actual keys form a small subset of the set of potential keys, as is very often the case, many (most) of the internal nodes in the Trie have only one descendant. This causes the Trie to h
A trie (from retrieval), is a multi-way tree structure useful for storing strings over an alphabet. It has been used to store large dictionaries of English (say) words in spelling-checking programs and in natural-language "understanding" programs. Given the data: an, ant, all, allot, alloy, aloe, are, ate, be the corresponding trie would be: The idea is that all strings sharing a common stem or pr
ãµã¼ãã¹çµäºã®ãç¥ãã ãã¤ãYahoo! JAPANã®ãµã¼ãã¹ããå©ç¨ããã ãèª ã«ãããã¨ããããã¾ãã ã客æ§ãã¢ã¯ã»ã¹ããããµã¼ãã¹ã¯æ¬æ¥ã¾ã§ã«ãµã¼ãã¹ãçµäºãããã¾ããã ä»å¾ã¨ãYahoo! JAPANã®ãµã¼ãã¹ããæ顧ãã ããã¾ãããããããããé¡ããããã¾ãã
è«æ DBSJ Letters Vol.6, No.1 ããã«é åã«ãããããªã·ã¢ãæ¡å¼µ ããåºæ°æ¢ç´¢æ³ Radix Search Method Extended Patricia based on the Double-array ææ ä¹ ç¨ â¥ ä¸æ åº·æ£ â¦ å°¾å´ æé â Hisatoshi MOCHIZUKI Yasumasa NAKAMURA Takuro OZAKI æ¨æ§é ã§è¡¨ç¾ãããåºæ°æ¢ç´¢æ³ã®æ¢ç´¢å¦çãé«éåããããï¼ é·ç§»ã 1 ã¤ããåå¨ããªãåå²ãå§ç¸®ãããããªã·ã¢ãï¼é·ç§»æ° ãæå¶ããããã«å¤åæ¨ã¨ãããã«ãã¦ã§ã¤åºæ°æ¢ç´¢æ³ãããï¼ ãã«ãã¦ã§ã¤åºæ°æ¢ç´¢æ³ã®ãã¼ã¿æ§é ã¨ãã¦ï¼ç¯ç¹éã®é·ç§»ãå® æ°æéã§æ±ºå®ã§ããé«éæ§ããã¤ããã«é åãããï¼æ¬è«æ㧠ã¯ï¼ããã«é åã«ãããããªã·ã¢ãæ¡å¼µããåºæ°æ¢ç´¢æ³ãææ¡ã ãï¼è©ä¾¡å®é¨ã®çµæï¼ææ¡ææ³ã¯æ¢ç´¢å¦çãæ´æ°å¦çã«ãã
ãç¥ãã
é害
ã©ã³ãã³ã°
ãªãªã¼ã¹ãé害æ å ±ãªã©ã®ãµã¼ãã¹ã®ãç¥ãã
ææ°ã®äººæ°ã¨ã³ããªã¼ã®é ä¿¡
å¦çãå®è¡ä¸ã§ã
j次ã®ããã¯ãã¼ã¯
kåã®ããã¯ãã¼ã¯
lãã¨ã§èªã
eã³ã¡ã³ãä¸è¦§ãéã
oãã¼ã¸ãéã
{{#tags}}- {{label}}
{{/tags}}