æ¯æ¥ã®æçã楽ãã¿ã«ãã
æ¯æ¥ã®æçã楽ãã¿ã«ãã
å®å ¨ã»å®å¿ã«è»¢è·æ´»åããã¦ããã ãããã®åãçµã¿ã«ã¤ãã¦å½ç¤¾ã§ã¯æ±è·è ã»æ¡ç¨ä¼æ¥ã®çæ§ããã³ç¤¾å¡ã®å®å ¨ã«é æ ®ããçãã¾ã«å®å¿ãã¦ãå©ç¨ããã ãã転è·æ¯æ´ãµã¼ãã¹ã®æä¾ã«åªãã¦åãã¾ãã 詳細ã«ã¤ãã¾ãã¦ã¯ããç¥ããããã確èªãã ããã> ãç¥ããã¯ãã¡ã
èªç¶è¨èªããSQLã¯ã¨ãªãæ©æ¢°å¦ç¿ã§çæãæ¥åãã¼ã¿ãã¼ã¹ãè¨èã§æ¤ç´¢ã§ããããã«ãã»ã¼ã«ã¹ãã©ã¼ã¹ã»ãããã³ã ãAIã®ç 究ææãå ¬é ã»ã¼ã«ã¹ãã©ã¼ã¹ã»ãããã³ã ã®äººå·¥ç¥è½ç 究é¨éã§ããSalesforce Researchã¯ãèªç¶è¨èªã«ãã質åã¨ãã¼ã¿ãã¼ã¹ã¹ãã¼ãã®æ å ±ãåºã«ã質åã«å¯¾å¿ããSQLã¯ã¨ãªãæ©æ¢°å¦ç¿ã§çæããç 究ææãå ¬éãã¾ããã ããã«ãã£ã¦ãã¸ãã¹ãã¼ã½ã³ãSQLè¨èªãå¦ã¶ãã¨ãªããæ¥åãã¼ã¿ãã¼ã¹ããå¿ è¦ãªæ å ±ãèªç¶è¨èªã§æ¤ç´¢ã§ãããã¨ãæå¾ ã§ãã¾ãã èªç¶è¨èªã解æãã¦SQLã¯ã¨ãªãçæ ä¸è¨ã®å³ã¯ãå ¬éãããç 究ææã®æ¦è¦ã示ãããã®ã§ãã å³ã®å·¦ä¸ãHow many engine types did Val Musetti useï¼ããèªç¶è¨èªã®åãã¨ãªãããEntrant / Constructor / Chassis / Engine / No / D
IEEE Internet Computingã®2017å¹´5ã»6æå·ã« "Two Decades of Recommender Systems at Amazon.com" ã¨ããè¨äºãæ²è¼ãããã 2003å¹´ã«åèªã«æ²è¼ãããã¬ãã¼ã "Amazon.com Recommendations: Item-to-Item Collaborative Filtering" ã Test of Timeãã¤ã¾ããæ代ã証æããã§è³ããåè³ãããã¨ãããã¦ã®ç¹å¥è¨äºããã 1ã ããã®ååãè²·ã£ã人ã¯ãããªååãè²·ã£ã¦ãã¾ããã¨ããæ¨è¦ã§æåãªAmazonã1998å¹´ã«ãã®åå°ã¨ãªãã¢ã«ã´ãªãºã ã®ç¹è¨±ãåºé¡ãã¦ãã20å¹´ãå½¼ãã æ¨è¦ã¢ã«ã´ãªãºã ãã©ã®ãããªè¦ç¹ã§æ¹è¯ãã¦ããã®ã ä»ãã©ã®ãããªæªæ¥ãæ³åããã®ã ãã®ä¸ç«¯ãç¥ããã¨ãã§ããè¨äºã ã£ãã ã¢ã¤ãã ãã¼ã¹å調ãã£ã«ã¿ãªã³ã° 20å¹´åã
2. ãµã¼ãã¤ã¨ã¯ä½ã ï® èªæ ï¨ ãã¨ãã¨ã¯ã調æ»ã ï¨ ç 究æ¥çã§ã¯ãæ¢åã®é¢é£è«æãç¶²ç¾ çã«èª¿æ»ã»åå¼·ãããã¨ã ï® ãªããµã¼ãã¤ããã®ãâ¦ä¾ãã°ï¼ ï¨ èªåã®èå³ããç 究åéãä¸ããåå¼·ãã ï¨ ç 究ãã¼ãã®ãã³ããæ¢ã ï¨ èªåãå®ç¾ãããç 究ã«å¿ è¦ãªåæç¥èã»è¦ç´ æè¡ãæ¢ã ï¨ æ°è¦æ§ãåªä½æ§ãæ¬å½ã«ããã®ããäºåã«æ¤è¨¼ãã ï¨ æ°è¦æ§ãåªä½æ§ãçºè¡¨æã«ç¤ºãããã®è¨¼æ ãæãã 4. ãã¤ããã®ï¼ãã¾ã§ããâ¦ã¨ã¯éããªã ï® [æ¹æ³ä¾1] åéå ¨ä½ããµã¼ãã¤ãã¦ããç 究ãã¼ããèãã ï¨ ã¾ãåéå ¨ä½ãç¶²ç¾ çã«ç解ãããã¾çæãã¹ããã¼ããçµã ï¨ ãã®åéã®ç¥èå ¨ä½ãéå ·ã¨ãã¦æ´»ç¨ãã ï¨ ãã®åéã§ç 究è ã«ãªããã人ã¯åéã®å ¨ä½åãç¥ãå¿ è¦ããã ï® [æ¹æ³ä¾2] ç 究ãã¼ãæ¡ããã¦ã¦ãããµã¼ãã¤ãã ï¨ ãç 究ã®ã¢ã¤ãã£ã¢ããã¼ãºãæåã«ããããã¨ããå ´åã« ï¨ ãã®ç 究
ã©ã®ææ¨ãã¨ã£ã¦ãéæ½®ã®ä¸é ããªã«ãä»ãããã¨å¤§å¦ãªã©ã§ç 究ãã¦ãã人ãã¡ã¯æã£ãã ãããããã«å¯¾ãã¦ãä¸è¬ã®äººãã¡ã¯ãããã£ï¼ãããªã®ããã¨é©ãããã«éããªãã è±ç§å¦èªãã¤ãã£ã¼ã«ãæ¥æ¬ã®ç§å¦ç 究ããã®10å¹´éã§å¤±éãã¦ãããã¨ãææããç¹éãæ²è¼ãããã ãã¬ã¼ããããã£ãããªã©ã¨ããçããããç¶æ³ã§ã¯ãªããé£è¡æ©ãªãã°ä»ããæãæããªãã¨ã¯ã©ãã·ã¥ããããªã失éç¶æ ã«ã¾ã§è¿½ãè¾¼ã¾ãã¦ããã¨è¨ãããã®ã ã è«æãã¼ã¿ãã¼ã¹Scopusã«ããã¨ã15å¹´ã¾ã§ã®10å¹´éã«ãä¸çä¸ã§ã¯è«ææ°ã80ï¼ å¢å ãã¦ããã®ã«ãæ¥æ¬ããã®è«æã¯14ï¼ ããå¢å ãã¦ããªãã ç¹ã«ãã³ã³ãã¥ã¼ã¿ã¼ãµã¤ã¨ã³ã¹ãç§ãé¢ä¿ããçåå¦ã»ååçç©å¦ãããã¦ãé©ãããã¨ã«ãæ¥æ¬ã®å¾æåéã¨ããããå ç«å¦ã§ããã®å¾åãé¡èã§ããã æ°ãæ¸ã£ã¦ã質ãä¿ããã¦ããã°ã¾ã ãããªã®ã ãããã¤ãã£ã¼ãé¸å®ããååéã®è¶ ä¸æµéèªã¸ã®
å士ãåã£ã¦ããã®3å¹´éã¯ã¢ã«ãããã¯ã§ä»äºããã¦ãããã©ã4æããæ°éä¼æ¥ã«ç§»ããã¨ã«ããã転è·ãããã©ããããã¨ãæ©ãã ããã ãã©ããã®æã«ç 究ã«ã¤ãã¦ããããã¨èããã®ã§ã¡ãã£ã¨æ¸ãã¦ã¿ããã å·¥å¦ã§ã¯ç 究ã¨éçºã®éããªãã¦ç¡ã 誰ããç´å¾ãããããªæ確ãªéãã¯ç¡ãã¨æãããã£ããæãã¦æ¬²ããã å®éãã»ã¨ãã©ã®ç 究ï¼è«æï¼ãä½ããéçºãã¦ãããããããä¸ã®ä¸ã®å½¹ã«ç«ããªãã¨è©ä¾¡ãããªããéã«ãã»ã¨ãã©ã®ãããã¯ãã«ã¯æ°è¦æ§ï¼ãããã¯ä»ã®ãããã¯ãã¨ã®å·®ç°ï¼ãããã確ãã«ãå·¥å¦ã«ããã¦ç 究ã¨å¼ã°ãããã®ã¯éçºã¨å¼ã°ãããã®ããå¹³åçã«ã¯åºç¤çãªãã¨ããã£ã¦ããã¨ã¯æããã©ãã¨ã¯ããæ確ãªç·å¼ã¯åºæ¥ãªãã ç 究ãç¥æ ¼åãããã風潮ãããããããªãããªã ãç 究è ã§ããã¨ããã¨ããããï¼ãã¨è¨ããããã¨ããããããããè¨ã£ã¦ããããã®ã¯å¬ãããã©ãã¹ã¤ã«ããããªããã99%ã®ç 究è ã¯ä¸ã®
2016å¹´12æ8æ¥ ã¯ãã¯ãããæ ªå¼ä¼ç¤¾ ã¯ãã¯ããããã¬ã·ãæ¤ç´¢ãã¼ã¿ãæ´»ç¨ããå¦è¡è«æãçºè¡¨ 100å¹´ã®æãçµã¦ããã¼ã¹ããã¼ãããæ£ææçã®æ°å®çªã« ã¯ãã¯ãããæ ªå¼ä¼ç¤¾ã¯ãéå±±å¦é¢å¥³åçæ大å¦ã®å®é½å®®ç±ä½³åææã¨ã®å ±åç 究ã«ããã20å件ãè¶ ããã¯ãã¯ãããã®ã¬ã·ãæ¤ç´¢ãã¼ã¿ã¨æ¢åç 究ã»æç®ãç¨ãã¦åæããçµæããã¼ã¹ããã¼ããªã©ã®çè±ï¼ä»¥ä¸èï¼ã使ã£ãç¹å®ã®ã¡ãã¥ã¼ãæ£æã®æ°å®çªæçã¨ãªãã¤ã¤ãããã¨ãæããã«ãªãã¾ããããã®ç 究ææãã2016å¹´11æ10æ¥ï¼æ¨ï¼ã«ä¸è¬ç¤¾å£æ³äººæ¥æ¬å®¶æ¿å¦ä¼é£æåç 究é¨ä¼ã®ä¼èªãé£æåç 究第12å·ãã«æ²è¼ããã¾ããã®ã§ãç¥ãããã¾ãã ãç 究ã®èæ¯ã¨ç®çã æ£æã«èæçãé£ã¹ããã¦ãããã¨ã¯å¤ãã®æ¢åç 究ãããç¥ããã¦ãã¾ãããæ´å²ççµç·¯ããå®éã«ã©ã®ãããªèæçãå®çãã¦ãããã«ã¤ãã¦ã¯æããã«ãªã£ã¦ãã¾ããã§ãããã¾ããæ±æ¸æ代ã«ã¯ä¸è¬ã«æ®
åè³æ±ºå®ç´å¾ã®10æ3æ¥å¤ã«ãæ±äº¬å·¥æ¥å¤§å¦ã§è¨è ä¼è¦ãã大é ãããç¹°ãè¿ãèªã£ãã®ã¯ãçæçãªææã«ç´çµããªãåºç¤ç§å¦ã追究ããç§å¦çç²¾ç¥ã®éè¦ããããã¦ãããããªããªã許ãããªããªã£ã¦ãã社ä¼ã¸ã®æãã ã£ãã
ããã«ã¡ã¯ã人äºé¨ã®å°ä¹ ä¿ã§ãã 8æ1æ¥ï¼æï¼ã4æ¥ï¼æ¨ï¼ã®4æ¥éãç»åã®èªèã»ç解ã·ã³ãã¸ã¦ã MIRUã«ç 究éçºé¨ã®ã¡ã³ãã¼ã¨åå ãã¦ãã¾ãããä»åã¯ãMIRUã®å 容ããªãåå ãã¦ããã®ãã«ã¤ãã¦ãç´¹ä»ãããã¨æãã¾ãã MIRUã¨ã¯ ä»åã§19åç®ãè¿ããç»åã®èªèã»ç解ã·ã³ãã¸ã¦ã ã§ãç»åã®èªèã¨ç解æè¡ã«é¢ããå½å æ大ã®ä¼è°ã§ãã å ·ä½çã«ã¯ãç 究è ãæè¡è ãå¦çãåºç¤ããå¿ç¨ã¾ã§ãã¾ãã¾ãªææ°ã®ç 究çºè¡¨ãããè¨è«ãããå ´ã¨ãªã£ã¦ãã¾ããä»åã¯é岡ã®æµæ¾ã§éå¬ããã¾ããã åèªã®çºè¡¨å 容ã¯1æã®ãã¹ã¿ã¼ã«ã¾ã¨ãããããã®ãå±ç¤ºããã¦ããããããããã¹ã¿ã¼ã®åã§ç´¹ä»ããå½¢ã«ãªã£ã¦ãã¾ããçºè¡¨ããã¢ã»ãã·ã§ã³ã«å ãã¦ãç¹å¥è¬æ¼ãå¥ä¼å ´ã§è¡ããã¾ããã ã¯ãã¯ãããã®åãçµã¿ ã¯ãã¯ãããã¯ä»ååãã¦MIRUã«åå ããã®ã§ãããä¼æ¥å±ç¤ºã¨ããå½¢ã§ãã¼ã¹ã§çºè¡¨ããã¾ããã æ¯æ¥ååä¸ã«ã¯
I am an Associate Professor with Indefinite Tenure of Databaseology in the Computer Science Department at Carnegie Mellon University. My research interest is in database management systems, specifically main memory systems, self-driving / autonomous architectures, transaction processing systems, and large-scale data analytics. At CMU, I am a member of the Database Group and the Parallel Data Labor
The Five-Minute Rule Ten Years Later, and Other Computer Storage Rules of Thumb (1997): This paper (and the original one proposed 10 years earlier) illustrates a quantitative formula to calculate whether a data page should be cached in memory or not. It is a delight to read Jim Gray approach to an array of related problems, e.g. how big should a page size be. AlphaSort: A Cache-Sensitive Parallel
ç 究室ã«å ¥ã£ãB4åãè«æã®èªã¿æ¹æ¢ãæ¹è¬åº§ã®ã¹ã©ã¤ãï¼ æ¬ã¹ã©ã¤ãã¯åæå±ã®ç«å½é¤¨å¤§å¦ ç°æã»æ¨æã»æ´ç°ç 究室OBã®ä¸åããã«å§ã¾ãï¼å¤§æ§»ï¼ç³é»åï¼ç¾D3ã®æ£®åï¼ä»ã«ããBrushupã«ãã£ã¦ç¾è¡ã®å½¢ã«ãªãã¾ããï¼ããã«ã礼ãç³ãä¸ãã¾ãï¼ ã·ã³ãã¸ã¦ã ã¨ã¸ã£ã¼ãã«ï¼å½éä¼è°ã®è«æã®è©ä¾¡ã価å¤ã«ã¤ãã¦ã¯åéã«ãã£ã¦ç°ãªãå¯è½æ§ãããã¾ãï¼ããã¾ã§å¤§æ§»ã®ç 究åéã§ã®è©±ã§ãããã¨ã¯ãæ¿ç¥ãããã ããï¼ ã¾ãï¼å 容ã¯å人ã®è¦è§£ã«ããã¨ããã大ããã§ãï¼ãããããé¡ããããã¾ãï¼Read less
VLDB2015 ä¼è°å ±å from Yuto Hayamizu ä»å¹´ã®8æã«éå¬ãããVLDB 2015ã®åå å ±åè³æãå ¬éãã¾ããã ä»åã®VLDBåå ã¯ãSIGMODæ¥æ¬æ¯é¨ãããããä¼è°ã®èª¿æ»æ´¾é£ã¨ããå½¢ã§åå ãã¦ããããã®å ±åã¨ãã¦2015/12/12ã«SIGMODæ¥æ¬æ¯é¨å¤§ä¼ã§è¬æ¼ããéã«ä½¿ã£ãè³æãä¸é¨ç·¨éãããã®ãå ¬éãã¦ãã¾ãã ãã¼ã¿ãã¼ã¹åéã®ç 究ã«ããã¦ã¯ãæé£é¢ã®å½éä¼è°ã¨ãã¦VLDBãSIGMODãICDEããããï¼ã¨ãã¦èªç¥ããã¦ãã¾ãããããã®ä¼è°ã§çºè¡¨ãããç 究è«æãããã¼ã¿ãã¼ã¹åéã«ããã¦æå 端ãã¤æãã¬ãã«ã®é«ãç 究ææã¨ãã£ã¦ãéè¨ã§ã¯ããã¾ãããã¾ããåã«æã質ã®é«ãç 究çºè¡¨ãè¡ãããã ãã§ã¯ãªãã第ä¸ç·ã®ç 究è ãéãã交æµãæ·±ããå ´æã¨ãã¦ãæ©è½ãã¦ãããæ°ããªç 究ã®ç¨®ãçã¾ããå ´æã«ããªã£ã¦ããã¨ãããã§ãããã SIGMODæ¥æ¬æ¯é¨ï¼æ¥æ¬ã®
the morning paper a random walk through Computer Science research, by Adrian Colyer Made delightfully fast by strattic Weâve reached the end of term again, and Iâm taking a break from writing up papers over the holidays â a chance to replenish my backlog and start planning for 2016 too! I want to see what I can do to improve the readability of the site as well. The Morning Paper will resume on the
2015 å¹´ã«ãããã¯ãã¯ãããã®ç 究éçºã«ã¤ãã¦ã¾ã¨ããè³æã§ãã
ãªãªã¸ãã«ã¯ãã¡ã https://www.microsoft.com/en-us/research/academic-program/write-great-research-paper/ http://research.microsoft.com/en-us/um/people/simonpj/papers/giving-a-talk/Writing%20a%20paper%20(seven%20suggestions).pptx æ°ãããã¼ã¸ã§ã³ã¯ãã¡ã https://www.slideshare.net/kdmsnr/how-to-write-a-great-research-paper-226669082Read less
æç¥æ± ï¼ ä¸é«å° ä¼ç¤¾ãè¾ãã¦å¦æ¯ãåã£ã¦å士課ç¨ã«åºæ»ã£ã¦ãããã¨ããé¸æã¯ããªãã¬ã¢ãªãã£ãªã¢ã ã¨æããåãé²è·¯ã«è¿·ã£ã¦ããæã«ãããä¸ãè²ã ã¨æ¤ç´¢ãã¦ã¿ããã©ãããããåä¾ã¯ã»ã¨ãã©è¦å½ãããªãã£ããããªã¢ã«ã§ãããããªï¼ã¢ããªï¼ãã¨ãããã¤åãã¦è¦ããï¼ãã¨ããæè¦ããèããªãã£ãã®ã§ããã£ã±ç¸å½ã«ã¬ã¢ã ããã¢ããªãã ã¨æããæç§çã¯ãç 究è ã®ãã£ãªã¢ãã¹ã®å¤æ§åãã¨ãè¨ã£ã¦ããã©ãæ»ã£ã¦ããããã®æã»ã©ããæ¯æ´ãªã©ç¹ã«ãªããç¬åã®å®ååè² ã§æ»ã£ã¦ãããããªãã£ãããã£ã±ãã¹ãã¬ã¼ãã§ä¿®å£«ã§ä¸ãã£ã¦ãã人ã¨æ¯ã¹ãã¨ãè²ã ã¨éããæãããã¨ãããã®ã§ãå®éã«ãã£ã¦ã¿ã¦ã©ããªæãã ã£ãããç°¡åã«æ¸ãã¦ã¿ãã ç³è«æ¸æåºã¾ã§ å¦æ¯ã¨ã¯ãæç§çä¸ã®æ¥æ¬å¦è¡æ¯èä¼ã®ãç¹å¥ç 究å¡ãå¶åº¦ã®ãã¨ããããã§èª¿ã¹ãã°æ å ±ã¯ãããã§ãåºã¦ãããã©ãå士課ç¨ã®å¦çã対象ã«ããã¿ã¤ãï¼DCï¼ã®å ´åãæ20ä¸å
ãªãªã¼ã¹ãé害æ å ±ãªã©ã®ãµã¼ãã¹ã®ãç¥ãã
ææ°ã®äººæ°ã¨ã³ããªã¼ã®é ä¿¡
å¦çãå®è¡ä¸ã§ã
j次ã®ããã¯ãã¼ã¯
kåã®ããã¯ãã¼ã¯
lãã¨ã§èªã
eã³ã¡ã³ãä¸è¦§ãéã
oãã¼ã¸ãéã
{{#tags}}- {{label}}
{{/tags}}