機械学習の社会実装では、予測精度が高くても、機械学習がブラックボックであるために使うことができないということがよく起きます。
このスライドでは機械学習が不得意な予測結果の根拠を示すために考案されたLIMEの論文を解説します。
Ribeiro, Marco Tulio, Sameer Singh, and Carlos Guestrin. "" Why should i trust you?" Explaining the predictions of any classifier." Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining. 2016.
A presentation for meeting of statistics in Japan.
https://connpass.com/event/204931/
Topics:
Methods and their properties to measure dependencies between variables
機械学習の社会実装では、予測精度が高くても、機械学習がブラックボックであるために使うことができないということがよく起きます。
このスライドでは機械学習が不得意な予測結果の根拠を示すために考案されたLIMEの論文を解説します。
Ribeiro, Marco Tulio, Sameer Singh, and Carlos Guestrin. "" Why should i trust you?" Explaining the predictions of any classifier." Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining. 2016.
A presentation for meeting of statistics in Japan.
https://connpass.com/event/204931/
Topics:
Methods and their properties to measure dependencies between variables
IoT Devices Compliant with JC-STAR Using Linux as a Container OSTomohiro Saneyoshi
Security requirements for IoT devices are becoming more defined, as seen with the EU Cyber Resilience Act and Japan’s JC-STAR.
It's common for IoT devices to run Linux as their operating system. However, adopting general-purpose Linux distributions like Ubuntu or Debian, or Yocto-based Linux, presents certain difficulties. This article outlines those difficulties.
It also, it highlights the security benefits of using a Linux-based container OS and explains how to adopt it with JC-STAR, using the "Armadillo Base OS" as an example.
Feb.25.2025@JAWS-UG IoT
12. Feature hashing / Hashing trick 12
ダミー変数はカテゴリの種類が多いと
特徴量量の次元数が⼤大きくなりすぎる
Feature hashingにより任意の次元に削減
Nの値がある程度度⼤大きければ精度度への影響⼩小
x := new vector[N]
for f in features:
h := hash(f)
x[h mod N] += 1
http://en.wikipedia.org/wiki/Feature_hashing
24. 機械学習とは 24
“Machine learning is the science of getting
computers to act without being explicitly
programmed.” Andrew Ng
⼀一般的にはコンピュータの振る舞い⽅方(モデル)を
(⼤大量量の)データから学習することにより獲得する.