97. 最新の反駁
• Anton Spanne , Henrik Jörntell
• “Questioning the role of sparse coding in the
brain”(Trends in Neurosciences,2015)
次の2つの点をはじめとしたさまざまな観点からス
パースコーディングの正当性を疑問視
⇒覚せい状態における視覚野の非スパース性
(Berkes,2009)
⇒スパース性最大化という問題設定への疑問:脳
はスパースコーディングを目標としていない?
97
100. 参考文献(1/6)
• Spanne, A., & Jörntell, H. (2015). Questioning the role of sparse coding in the
brain. Trends in neurosciences, 38(7), 417-427.
• [Barlow,1981]Barlow, H. B. (1981). The Ferrier Lecture, 1980: Critical limiting
factors in the design of the eye and visual cortex. Proceedings of the Royal
Society of London B: Biological Sciences, 212(1186), 1-34.
• [Barlow,1972]Barlow, H. B. (2009). Single units and sensation: a neuron doctrine
for perceptual psychology?. Perception, (38), 795-8.
• [Boyd et al,2011]Boyd, S., Parikh, N., Chu, E., Peleato, B., & Eckstein, J. (2011).
Distributed optimization and statistical learning via the alternating direction
method of multipliers. Foundations and Trends® in Machine Learning, 3(1), 1-
122.
• [Candès et al.,2006]Candès, E. J., Romberg, J., & Tao, T. (2006). Robust
uncertainty principles: Exact signal reconstruction from highly incomplete
frequency information.Information Theory, IEEE Transactions on, 52(2), 489-509.
• [Efron et al.,2004]Efron, B., Hastie, T., Johnstone, I., & Tibshirani, R. (2004). Least
angle regression. The Annals of statistics, 32(2), 407-499.
100
101. 参考文献(2/6)
• [Friedman et al,2007]Friedman, J., Hastie, T., Höfling, H., & Tibshirani, R. (2007).
Pathwise coordinate optimization. The Annals of Applied Statistics, 1(2), 302-332.
• [Friedman et al.,2008]Friedman, J., Hastie, T., & Tibshirani, R. (2008). Sparse
inverse covariance estimation with the graphical lasso. Biostatistics, 9(3), 432-
441.
• [Friedman et al.,2010]Friedman, J., Hastie, T., & Tibshirani, R. (2010).
Regularization paths for generalized linear models via coordinate
descent. Journal of statistical software, 33(1), 1.
• [Fu,1998]Fu, W. J. (1998). Penalized regressions: the bridge versus the
lasso. Journal of computational and graphical statistics, 7(3), 397-416.
• Hoerl, A. E., & Kennard, R. W. (1970). Ridge regression: Biased estimation for
nonorthogonal problems. Technometrics, 12(1), 55-67.
• [Honma et al.2014]Honma, M., Akiyama, K., Uemura, M., & Ikeda, S. (2014).
Super-resolution imaging with radio interferometry using sparse
modeling. Publications of the Astronomical Society of Japan, psu070.
101
102. 参考文献(3/6)
• [Olshausen et al.,1996]Olshausen, B. A., & Field, D. J.(1996). Emergence of
simple-cell receptive field properties by learning a sparse code for natural
images. Nature, 381(6583), 607-609.
• [Olshausen et al.,1997]Olshausen, B. A., & Field, D. J. (1997). Sparse coding with
an overcomplete basis set: A strategy employed by V1?. Vision research, 37(23),
3311-3325.
• [Olshausen et al.,2004]Olshausen, B. A., & Field, D. J. (2004). Sparse coding of
sensory inputs.Current opinion in neurobiology, 14(4), 481-487.
• [Spanne et al.,2015]Spanne, A., & Jörntell, H. (2015). Questioning the role of
sparse coding in the brain. Trends in neurosciences, 38(7), 417-427.
• [Tibshirani,1996]Tibshirani, R. (1996). Regression shrinkage and selection via the
lasso. Journal of the Royal Statistical Society. Series B (Methodological), 267-288.
• [Tibshirani et al.,2005]Tibshirani, R., Saunders, M., Rosset, S., Zhu, J., & Knight, K.
(2005). Sparsity and smoothness via the fused lasso. Journal of the Royal
Statistical Society: Series B (Statistical Methodology), 67(1), 91-108.
102
103. 参考文献(4/6)
• [Yuan and Lin,2006]Yuan, M., & Lin, Y. (2006). Model selection and estimation in
regression with grouped variables. Journal of the Royal Statistical Society: Series
B (Statistical Methodology), 68(1), 49-67.
• [Zou and Hastie,2005]Zou, H., & Hastie, T. (2005). Regularization and variable
selection via the elastic net. Journal of the Royal Statistical Society: Series B
(Statistical Methodology), 67(2), 301-320.
• [Zou,2006]Zou, H. (2006). The adaptive lasso and its oracle properties. Journal
of the American statistical association, 101(476), 1418-1429.
103