KDD Cup 2021で開催された時系列異常検知コンペ
Multi-dataset Time Series Anomaly Detection (https://compete.hexagon-ml.com/practice/competition/39/) に参加して
5位入賞した解法の紹介と上位解法の整理のための資料です.
9/24のKDD2021参加報告&論文読み会 (https://connpass.com/event/223966/) の発表資料です.
ゼロから始める深層強化学習(NLP2018講演資料)/ Introduction of Deep Reinforcement LearningPreferred Networks
Introduction of Deep Reinforcement Learning, which was presented at domestic NLP conference.
言語処理学会第24回年次大会(NLP2018) での講演資料です。
http://www.anlp.jp/nlp2018/#tutorial
The document describes various probability distributions that can arise from combining Bernoulli random variables. It shows how a binomial distribution emerges from summing Bernoulli random variables, and how Poisson, normal, chi-squared, exponential, gamma, and inverse gamma distributions can approximate the binomial as the number of Bernoulli trials increases. Code examples in R are provided to simulate sampling from these distributions and compare the simulated distributions to their theoretical probability density functions.
- The document discusses linear regression models and methods for estimating coefficients, including ordinary least squares and regularization methods like ridge regression and lasso regression.
- It explains how lasso regression, unlike ordinary least squares and ridge regression, has the property of driving some of the coefficient estimates exactly to zero, allowing for variable selection.
- An example using crime rate data shows how lasso regression can select a more parsimonious model than other methods by setting some coefficients to zero.
ゼロから始める深層強化学習(NLP2018講演資料)/ Introduction of Deep Reinforcement LearningPreferred Networks
Introduction of Deep Reinforcement Learning, which was presented at domestic NLP conference.
言語処理学会第24回年次大会(NLP2018) での講演資料です。
http://www.anlp.jp/nlp2018/#tutorial
The document describes various probability distributions that can arise from combining Bernoulli random variables. It shows how a binomial distribution emerges from summing Bernoulli random variables, and how Poisson, normal, chi-squared, exponential, gamma, and inverse gamma distributions can approximate the binomial as the number of Bernoulli trials increases. Code examples in R are provided to simulate sampling from these distributions and compare the simulated distributions to their theoretical probability density functions.
- The document discusses linear regression models and methods for estimating coefficients, including ordinary least squares and regularization methods like ridge regression and lasso regression.
- It explains how lasso regression, unlike ordinary least squares and ridge regression, has the property of driving some of the coefficient estimates exactly to zero, allowing for variable selection.
- An example using crime rate data shows how lasso regression can select a more parsimonious model than other methods by setting some coefficients to zero.
This document discusses Mahout, an Apache project for machine learning algorithms like classification, clustering, and pattern mining. It describes using Mahout with Hadoop to build a Naive Bayes classifier on Wikipedia data to classify articles into categories like "game" and "sports". The process includes splitting Wikipedia XML, training the classifier on Hadoop, and testing it to generate a confusion matrix. Mahout can also integrate with other systems like HBase for real-time classification.
This document discusses Python and machine learning libraries like scikit-learn. It provides code examples for loading data, fitting models, and making predictions using scikit-learn algorithms. It also covers working with NumPy arrays and loading data from files like CSVs.
"Anime Generation with AI".
- Video: Generated Anime: https://youtu.be/X9j1fwexK2c
- Video: Other AI Solutions for Anime Production Issues: https://youtu.be/Gz90H1M7_u4
The document discusses recent advances in generative adversarial networks (GANs) for image generation. It summarizes two influential GAN models: ProgressiveGAN (Karras et al., 2018) and BigGAN (Brock et al., 2019). ProgressiveGAN introduced progressive growing of GANs to produce high resolution images. BigGAN scaled up GAN training through techniques like large batch sizes and regularization methods to generate high fidelity natural images. The document also discusses using GANs to generate full-body, high-resolution anime characters and adding motion through structure-conditional GANs.
Apache Mahout - Random Forests - #TokyoWebmining #8 Koichi Hamada
The document discusses social media, social graphs, personality modeling, data mining, machine learning, and random forests. It references social media, how individuals connect through social graphs, modeling personality objectively, extracting patterns from data through data mining and machine learning techniques, and the random forests algorithm developed by Leo Breiman in 2001.
「樹木モデルとランダムフォレスト(Tree-based Models and Random Forest) -機械学習による分類・予測-」。 Tree-based Model, Random Forest の入門的な内容です。機械学習・データマイニングセミナー 2010/10/07 。 hamadakoichi 濱田晃一
IoT Devices Compliant with JC-STAR Using Linux as a Container OSTomohiro Saneyoshi
Security requirements for IoT devices are becoming more defined, as seen with the EU Cyber Resilience Act and Japan’s JC-STAR.
It's common for IoT devices to run Linux as their operating system. However, adopting general-purpose Linux distributions like Ubuntu or Debian, or Yocto-based Linux, presents certain difficulties. This article outlines those difficulties.
It also, it highlights the security benefits of using a Linux-based container OS and explains how to adopt it with JC-STAR, using the "Armadillo Base OS" as an example.
Feb.25.2025@JAWS-UG IoT
11. 数理解析手法の実ビジネスへの適用
2004年 博士号取得後
数理解析手法を実ビジネス適用の方法論構築
主な領域
◆活動の数理モデル化・解析手法
◆活動の分析手法・再構築手法
◆活動の実行制御・実績解析システム
…
内容抜粋
“Decoupling Executions in Navigating Manufacturing "Unified graph representation of processes
Processes for Shortening Lead Time and Its Implementation for scheduling with flexible resource
to an Unmanned Machine Shop”, assignment",
11
12. 数理解析手法の実ビジネスへの適用:活動例
活動例
活動の統一グラフモデルを構築・解析
Unified graphical model of processes and resources
青字:割付モデル属性
[ ] : Optional
Node ・priority(優先度) Edge
・duration(予定時間)
[・earliest(再早開始日時) ] Process Edge
Process [・deadline(納期) ]
[・or(条件集約数) ]
前プロセスの終了後に後プロセスが
プロセスを表す 開始できること表す
・attributes(属性)
preemptable(中断可否),
successive(引継ぎ可否)
Uses Edge
workload(作業負荷) Processが使用する
uses uses uses uses uses uses Assign Region を表す
Assign Region Assigns from Edge
同一Resourceを割付け続ける Assign Regionに
assigns from assigns from 指定Resourceの子Resource集合の
範囲を表す
assigns assigns 中から割付けることを示す
企業01 [process]
has has [startDate(開始日時)]
[endDate(終了日時)] Assigns Edge
製品01 組織A StartDateからEndDateまでの間
Resource has Assign RegionにResourceを
割付対象要素を表す has has has has has has 割付けることを表す
・capacity(容量)
・calender(カレンダー)
AAA01 AAB02 … 山田さん 田中さん 鈴木さん ・attributes(属性) Has Edge
東さん Resourceの所有関係を表す
12
22. Random Forest とは
樹木モデルの集団学習により
高精度の分類・予測を行う
学習用データ
Random Sampling 1 Sampling 2 … Sampling B
Forest
Forest
Tree 1 Tree 2 … Tree B
予測対象
Result 1 Result 2 … Result B
分類・予測結果 22
23. Random Forest とは
樹木モデルの集団学習により
高精度の分類・予測を行う
学習用データ
Random Sampling 1 Sampling 2 … Sampling B
Forest
Forest
Tree 1 Tree 2 … Tree B
予測対象
Result 1 Result 2 … Result B
分類・予測結果 23
24. Random Forest とは
樹木モデルの集団学習により
高精度の分類・予測を行う
学習用データ
Random Sampling 1 Sampling 2 … Sampling B
Forest
Forest
Tree 1 Tree 2 … Tree B
予測対象
Result 1 Result 2 … Result B
分類・予測結果 24
32. 樹木モデル: 分岐基準
条件ノード A を条件ノードALとARに分けるとき
以下のΔIを最大化する分割を行う
Classification And Regression Trees (CART)
(Breiman et al, 1984)
分類木
Entropy
GINI係数
※ :条件ノード A で クラス k をとる確率
回帰木
尤離度(deviance)
※ :条件ノード A での目標変数 t の平均値 32
33. Random Forest とは
樹木モデルの集団学習により
高精度の分類・予測を行う
学習用データ
Random Sampling 1 Sampling 2 … Sampling B
Forest
Forest
Tree 1 Tree 2 … Tree B
予測対象
Result 1 Result 2 … Result B
分類・予測結果 33
34. Random Forest とは
樹木モデルの集団学習により
高精度の分類・予測を行う
学習用データ
Random Sampling 1 Sampling 2 … Sampling B
Forest
Forest
Tree 1 Tree 2 … Tree B
予測対象
Result 1 Result 2 … Result B
分類・予測結果 34
43. Random Forest
Tree Modelの集団学習による
高精度の分類・予測(回帰)
学習用データ
Random Sampling 1 Sampling 2 … Sampling B
Forest
Forest
Tree 1 Tree 2 … Tree B
予測対象
Result 1 Result 2 … Result B
分類・予測結果 43
52. Random Forest アルゴリズム
全樹木モデルで
分類・回帰予測の結果算出
学習用データ
Random Sampling 1 Sampling 2 … Sampling B
Forest
Forest
Tree 1 Tree 2 … Tree B
予測対象
Result 1 Result 2 … Result B
52
53. Random Forest アルゴリズム
全Tree Model の結果を統合する
分類:多数決、回帰予測:平均
学習用データ
Random Sampling 1 Sampling 2 … Sampling B
Forest
Forest
Tree 1 Tree 2 … Tree B
予測対象
Result 1 Result 2 … Result B
分類・予測結果 53
54. Random Forest アルゴリズム
Tree Modelの集団学習による
高精度の分類・予測(回帰)
学習用データ
Random Sampling 1 Sampling 2 … Sampling B
Forest
Forest
Tree 1 Tree 2 … Tree B
予測対象
Result 1 Result 2 … Result B
分類・予測結果 54
55. Random Forest
Random Forest の
主な特長
・精度が高い
・説明変数が数百、数千でも効率的に作動
・目的変数に対する説明変数の重要度を推定
・欠損値を持つデータでも有効に動作
・個体数がアンバランスでもエラーバランスが保たれる
55