Abstract
Animals derive resources from their diet and allocate them to organismal functions such as growth, maintenance, reproduction, and dispersal. How variation in diet quality can affect resource allocation to life-history traits, in particular those important to locomotion and dispersal, is poorly understood. We hypothesize that, particularly for specialist herbivore insects that are in co-evolutionary arms races with host plants, changes in host plant will impact performance. From their coevolutionary arms-race with plants, to a complex migratory life history, Monarch butterflies are among the most iconic insect species worldwide. Population declines initiated international conservation efforts involving the replanting of a variety of milkweed species. However, this practice was implemented with little regard for how diverse defensive chemistry of milkweeds experienced by monarch larvae may affect adult fitness traits. We report that adult flight muscle investment, flight energetics, and maintenance costs depend on the host plant species of larvae, and correlate with concentration of milkweed-derived cardenolides sequestered by adults. Our findings indicate host plant species can impact monarchs by affecting fuel requirements for flight.
Similar content being viewed by others
Introduction
Significant progress in our mechanistic understanding of plant-insect herbivore interactions has been made since Ehrlich & Raven1 first recognized their coevolutionary nature. Much of this work has focused on host plant interactions with larval insects2,3. This is not surprising since numerous plant-herbivore systems under scrutiny involve insect larvae that inflict significant damage to economically important (crop) plants. Effects of early-life nutrition on late-life metrics have been studied using approaches such as nutritional geometrical frameworks4. There has also been work on how larval host plant experiences may persist throughout ontogeny and affect adult traits5,6,7. However, little is known about how variation in larval host plant quality affects traits important to adult flight performance, which is key to the reproduction, dispersal and distribution dynamics of many insects. Larval food quality and availability have long been hypothesized to drive changes in dispersal capacity and/or propensity in adult insects8, and these factors have been demonstrated to affect morphological traits important to insect flight (reviewed in9,10). Yet, few studies have described effects of larval diet quality on actual flight performance in adults. Larval diet quality and quantity affected free-flight energy expenditure (i.e., flight metabolic rate) of adult Manduca sexta and Spodoptera frugiperda, respectively7,11, while, also in M. sexta, larval diet quality was shown to affect the lipid content of adult moths, and flying interactions with feeding arrays, although feeding frequency was unaffected12. Finally, in the migratory locust Oedaleus asiaticus, nymphs reared on high quality diet produced adults with enhanced migratory morphology (i.e., increased wing area, and mass allocation to the thorax and legs) and tethered flight activity13.
To further our understanding of this aspect of plant-insect herbivore interactions, we sought to examine how larval dietary history affects flight performance traits of adults in the monarch butterfly (Danaus plexippus), whose larval host plant interactions are a model system for chemical ecology- and coevolution research fields1,14,15,16.
Monarch butterfly populations rely primarily on the availability of milkweed (Asclepias spp.) to complete their annual life cycle, which includes a generation that migrates to-and-from winter roosting sites in Mexico and locations in the rest of North America17,18. While the common milkweed, A. syriaca, is distributed across their North American range, monarchs can encounter a variety of milkweed species as multiple generations of breeding females oviposit eggs during the northward migration17. Moreover, loss of suitable monarch habitat due to the expansion of residential and agricultural areas in the continental US, and increased herbicide and insecticide use19,20,21, have led to large-scale efforts to replant monarch migration corridors with a variety of milkweed species22.
Despite their specialist reputation, monarchs are sensitive to the variable defenses that different species of milkweed harbor23,24,25,26,27,28. Indeed, monarch larval growth rate varies more than ten-fold across different milkweed host species and is correlated with milkweed tissue content of sticky latex and cardenolides (i.e., toxic steroids)29, defensive compounds that are also inducible by herbivory23. Milkweed host species also was shown to affect monarch pupal, adult size, and lipid content30. Cardenolides disrupt Na+/K+-ATPase activity in cells23,24 and thus can exert considerable influence over chemical- and energy exchange processes in most species. While monarch Na+/K+-ATPase is considered relatively insensitive to cardenolide action31, this notion is primarily based on larval work focused on the cardenolide oubain, although several other cardenolides are present in milkweed for which Na+/K+-ATPase sensitivity is less well-understood. Furthermore, recent work has shown that variation levels of specific cardenolides can negatively impact monarch growth32. Overall, these findings indicate that milkweed host plants differ in their suitability to monarch larvae and may differentially affect the physiology adult monarchs.
Insect flight is an energetically costly trait. Flight muscle investment needs to be substantial to achieve body weight support aerodynamically and remain airborne (i.e., 12â65% of body mass33,34). Moreover, during free flight, insect flight muscle achieves respiration rates that are 20â100 fold (depending on the species) higher than those of resting insects35, these are the highest known respiratory rates (i.e., metabolic rates) for any locomotor tissue36. Therefore, factors that affect energy substrate storage, supply to-, and utilization by flight muscles, are expected to affect the flight performance of insects.
The study of monarch flight has been restricted largely to tracking migratory routes37,38,39, movement through local habitats40, and characterizing mechanisms of navigation41,42,43. Recently, however, Zhan et al.44 examined monarch flight from an evolutionary physiological and demographic perspective and demonstrated genetic differences between non-migratory (those never producing migrants) and migratory (those producing a long-distance migrant generation every year) monarch populations44. Importantly, this study showed that flight metabolic rate was significantly lower for non-migrant individuals from migratory populations than for those from non-migratory populations, suggesting that adult flight in the former is more energy efficient. Environmental factors contributing to variation in the cost of flight for adult monarchs have not yet been examined. While a recent study reported an effect of milkweed larval host species on adult wing morphology, adult flight distance and duration on flight mills was not affected by larval diet45,46. However, metabolic rates of insects âflyingâ in tethered preparations such as flight mills are significantly lower than those achieved during free flight47,48,49,50, presumably because there is no need to provide body weight support. Furthermore, given the diversity of plant defensive metabolites and the range of outcomes for insect development, studying how plant variation affects insect dispersal is vital to understanding this often-overlooked component of plant-herbivore ecology. Therefore, how larval dietary history may affect relevant costs of flight for adult monarchs remains unknown.
We hypothesized that monarch larval dietary history affects adult traits relevant to flight performance. Given that neural and excretory tissues in particular express high amounts of Na+/K+-ATPases and are significant contributors to energy expenditure at rest (i.e., resting metabolic rate)51, we also hypothesized that milkweed host plant species would affect resting metabolic rates of adult monarchs. To test these hypotheses, we reared D. plexippus larvae on eight Asclepias host species known to vary in toxicity level and ecological relevance (Table 1) and measured resting- and free-flight metabolic rates of resulting adults using flow-through respirometry. In addition, we examined host plant effects on adult flight muscle investment, energy stores, toxin sequestration and wing morphology (see Table S1 for full set of variables/results).
Results
Monarchs are a vagile species traveling up to 15âkm per day during the breeding season52, and upwards of 250âm in only a few minutes40. To support this aerial performance it is expected that investment in flight muscle mass is significant33. Indeed, average flight muscle ratios â the percentage of total body mass consisting of flight muscle mass â of other Danainae butterflies are higher than 25%53. Our study showed that adult monarch flight muscle ratio was significantly affected by larval host plant (F7,93â=â4.61, Pâ=â0.0002; Fig. 1). Specifically, mean flight muscle ratios of adults produced by larvae reared on tropical milkweed A. curassavica (35.4 ± 2.0%, Îâ=â19) and showy milkweed A. speciosa (33.8â±â 2.2%, Îâ=â15) were significantly higher (cur-sul: Pâ=â0.0008, cur-ver: Pâ=â0.017; spe-sul: Pâ=â0.01, respectively; see Fig. 1) than those of adults reared on prairie milkweed A. sullivantii (22.5â±â2.2%, Îâ=â15) and whorled milkweed A. verticillata (24.2â±â2.6%, Îâ=â11).
Moreover, total body mass (F7,121â=â5.36, Pâ<â0.0001) and forewing length (F7,121â=â4.19, Pâ=â0.0004) varied significantly with larval host plant, while total body lipid content and other life history traits were unaffected (Table S2). The observed increased flight muscle ratio for A. curassavica- and A. speciosa-derived adults may be a necessary consequence of their overall body mass increases and is generally predicted by unequal scaling of muscle performance and body size51. Importantly however, this extra flight muscle mass investment may also come at an increased energetic cost (per unit body mass) of flight. Indeed, mean normalized adult flight metabolic rate (FMR i.e., VCO2 during flight) was affected by larval diet (F7,93â=â3.09, Pâ=â0.0056; Fig. 2b), as adults reared on A. curassavica and A. speciosa produced significantly higher FMR than those reared on A. sullivantii (Pâ=â0.0031 and Pâ=â0.044, respectively). Moreover, mean resting metabolic rate (RMR, i.e., VCO2 at rest) also varied significantly among larval dietary groups (F7,93â=â4.09, Pâ=â0.0006; Fig. 2c). Specifically, adults reared on A. speciosa had a significantly higher normalized RMR than those reared on A. sullivantii (Pâ=â0.0075), A. verticillata (Pâ=â0.0283), and A. syriaca (Pâ=â0.0276), while those reared on A. curassavica had significantly higher normalized resting metabolic rate than A. sullivantii (Pâ=â0.0181). These results indicate that in addition to energy expenditure during flight, larval milkweed host species affect the energetic maintenance costs of adult monarchs.
Using VCO2 as a proxy for energy expenditure during flight assumes that the respiratory quotient (i.e., VCO2/VO2, or flight muscle substrate use) stayed constant. While Lepidoptera have generally been observed to use carbohydrates as flight muscle fuels, respiratory quotients of adults in free flight have been reported to vary with dietary intake51. Here we report that larval milkweed diet did not affect the mean respiratory quotient of flying adult (Fig. 2d), indicating that the observed effects on flight metabolic rate in our study are indicative of changes in overall energy expenditure rather than diet-induced shifts in flight muscle substrate use. Thus, adults derived from larvae reared on A. curassavica required significantly more energy per unit body mass for flight than those reared on A. sullivantii and A. verticillata. Interestingly, mean monarch RQ values varied between 1.3â1.4 (Fig. 2d), which is similar to mean RQ values reported for Manduca sexta hawkmoths by Levin et al.54, who suggest these relatively high values (i.e., aerobic, pure carbohydrate oxidation should result in RQ values approximating 1.0) are likely caused by the use of the pentose phosphate shunt during flight activity in these nectivorous insects.
Although monarchs benefit from sequestration of milkweed cardenolides since they confer some level of protection against higher trophic levels55,56 and infection57, at high levels these toxins negatively affect larval growth and survival23,29,31,55. To start examining if sequestration-associated exposure to cardenolides may also affect adult energy expenditure, we extracted and quantified cardenolide content of wings from adult specimens used in the respirometry trials. We then examined how wing cardenolide content correlated with adult flight muscle mass ratio and observed flight and maintenance energetic costs. As expected from a previous report on milkweed cardenolide content29, the wings of adults reared on A. curassavica contained significantly higher amount of cardenolides than those reared on the other seven species (Ï2â=â49.062, d.f.â=â7, Pâ=â2.206eâ8, Fig. 3a). In addition, wing cardenolide content was a significant predictor of both normalized metabolic rate at rest and during flight (Fig. 3b, c), providing support for the hypothesis that larval exposure to higher levels of toxic host plant defenses (in the form of cardenolides) causes increased energy expenditure by adult butterflies. Although wing cardenolide content may not be the ultimate proxy for cardenolide exposure, it is correlated to the amount in the abdomen and thorax58 and an indicator for the amount they were exposed to in their host29. We recognize it is possible that milkweed host quality traits other than cardenolide content28,59,60 might have mediated the effects on adult traits observed in this study. For example, adults reared on A. speciosa, that demonstrated high flight metabolic rates (Fig. 2b), did not sequester significantly higher cardenolide levels than those reared on A. syriaca (Fig. 3a; Pâ=â0.130; A. syriaca produced adults with intermediate flight metabolic rates) and A. sullivantii (Fig. 3a; Pâ=â0.955; A. sullivantii produced adults with low flight metabolic rate), and significantly lower amounts than those reared on A. currassavica (Fig. 3a; Pâ<â0.0001). In addition to the correlations of wing cardenolide content and flight muscle ratio (Fig. 3d), and maintenance- and flight energetic costs, we find that flight muscle ratio by itself explained 42 and 59% of variation in mass-specific flight- and resting metabolic rates, respectively (Fig. 4).
Prior work demonstrated that larval dietary history affects adult lipid storage in monarchs and other insects6,30, but our study showed no effects of milkweed host on adult lipid content (Table S1). This is likely because adult monarchs in these experiments had ad libitum access to carbohydrate-rich artificial nectar during the eight days prior to flight trials (see Methods). Monarchs typically eclose with a small, variable lipid store30, but larger lipid stores are needed to prompt reproductive development61 and support long distance dispersal flights62. Adult monarchs maintain and build upon their lipid stores throughout the breeding season39,63,64 by converting dietary carbohydrates to lipid as has been documented for other insects65,66,67,68,69. Thus, pre-flight trial carbohydrate intake likely allowed adults to supplement their lipid stores and mask any potential effects of larval diet on lipid content, in a fashion similar to that demonstrated for other butterflies that sought out nectar rich in amino acids to compensate for a poor larval diet70.
Discussion
Overall, our study suggests that trophic interactions between larval insect herbivores and their host plants can affect key adult insect fitness traits such as flight muscle investment, maintenance- and flight energetics. Interestingly, tropical milkweed (A. curassavica), a rather controversial monarch host plant for monarchs in the migratory ranges18, produced larger adults with higher flight muscle investment (Fig. 1) that incur the highest energetic costs of flight for a given body mass (Fig. 2b). In comparison, common-, prairie- and whorled milkweed (A. syriaca, sullivantii and verticillata, respectively) produced relatively small adults with lower energetic costs of flight and maintenance (Fig. 2c). Although tropical milkweed (non-native to the U.S. and Canada) is not used in most replanting efforts to re-establish monarch habitat, its range has been increasing northward from Mexico and frequently overlaps with that of native milkweed host plant populations18. Common milkweed is by far the most common naturally occurring milkweed, supports development of wing shapes suited for long-distance flight45 and remains the most important plant species for the monarch populations that will undertake the longest southward migratory flights. Most monarch butterflies at Mexican overwintering sites feed on common milkweed as larvae71 and tropical milkweed is thought to interfere with monarch migration when it is planted as a resource to monarchs in migratory corridors by transitioning migrants to the reproductive stage early or the proliferation of pathogens18,72,73,74. Our study suggests that one contributor to this interference may be tropical milkweedâs effect on adult monarch energetics. Disentangling the relative contribution of nutrition, defenses, flight muscle would require additional studies focusing on just this species. Work by Agrawal et al.32 recently examined such mechanisms for larval performance on tropical milkweed.
Although relationships between milkweeds, monarchs, and toxins have played a central role in our understanding of coevolution, plant defense, sequestration, and animal behavior17, understanding the mechanistic link between host plant chemicals, sequestration and adult flight is challenging. There is some recent evidence that cardenolides can be a burden for monarchs and that there are costs to sequestration32. In vitro work by Petschenka et al.75 demonstrated that certain cardenolides can be strong inhibitors of neural function in monarchs. Thus, our work utilizing different milkweed species with unique cardenolide composition allows for potential costs to become apparent. Thereâs strong evidence suggesting monarchs selectively sequester more polar compounds, by either modification, detox, or transport76 and may even reduce exposure of larvae to more toxic compounds via ovipositional preference32. Thus, monarch mitigation strategies to sequester these poisonous compounds suggests costs not only to growth, survival, lifespan77, and here we find support for costs of sequestration that affects energetics as well.
The host plant effects on energetics may be primarily driven by their positive effects on animal size and flight muscle tissue investment. While increased size may generally convey higher quality in insects in terms of fecundity78,79,80, our findings underline that increased size also comes with relatively high energetic demands. Higher energetic costs for larger individuals may not be problematic in natural settings with ample energy resource availability to monarchs, but when energy availability is limited (e.g. during poor summer/fall conditions, availability of nectar resources) and/or when energy saving is of primary concern (e.g. during overwintering and long-distance dispersal) higher energetic demand may not be favored. Flight metabolic rates in monarchs from migratory populations were reported to be significantly lower than those from non-migratory populations in Southern Florida44, further supporting the idea that managing energy expenditure is a crucial trait to the dispersal and population dynamics of this species. Therefore, in particular if the energy expenditure of adult migrant phenotypes are even more sensitive to dietary history13 than non-migrant monarch phenotypes such as studied by Zhan et al.44 and in this study, milkweed larval host could negatively affect the ability of eastern US monarch migrants to reach Mexican roosts and overwinter successfully. Thus, laboratory work with migratory phenotypes and host plants should be done in future studies.
This study extends traditional approaches that have typically used a limited set of larval traits (e.g. larval growth and mortality) as overall measures of herbivore performance on host plants. Given the current lack of knowledge in this area and increasing availability of genomic resources in non-model systems, this work serves as an example for future studies in this and other systems aimed at achieving a mechanistic understanding of short- and long-term environmental variation on plant-herbivore interactions across life stages. With specific regard to the monarch butterfly, our findings contribute basic biological and ecological insights but may also inform efforts aimed at addressing monarch population declines. Here we find that efforts to protect a species, by selection of host plants, may have unintentional consequences that deserve further assessment. In particular, if larval milkweed host plants generally influence adult monarch energetic demands in significant ways, one of the key unanswered questions is how this may impact the yearly migratory journey many monarch populations undertake.
Methods
Plant and animal husbandry
Monarch eggs were obtained from a colony kept year-round at Iowa State University (ISU, USDA-ARS, Ames IA) for approximately 18 generations. Monarchs were collected in the early summer of 2018 (42 wild-caught adults) and added to the existing colony to prevent inbreeding. Only 3 generations of these mixed-collection adults preceded our study. Colony individuals were maintained on A. syriaca and A. curassavica seasonally at ISU. Eggs were laid on A. curassavica and shipped overnight on A. curassavica stems and eggs we received from this colony were the progeny of over 50 adult females; eggs from a specific female were not assigned to specific plant treatments. Eggs were transferred to an incubator kept at 25â°C, 16:8âL:D, 70% RH for 3 days until hatch. First instars were then transferred to milkweed plants to mature (See S1 for resulting sample sizes per plant species).
Eclosion date was recorded for each individual, and post eclosion, all adults were allowed to sclerotize in individual plastic cups for 24âh. Sclerotized adults were weighed to the nearest 0.01âmg in a Mettler AJ100 balance (Mettler-Toledo LLC, Columbus, OH, USA). Adult forewing length and hindwing length was measured to the nearest 0.01âmm with digital calipers (Neiko Tools, USA) and all adults were examined for the parasite Ophryocystis elektroscirrha (OE) using the tape method81. No adults used in respirometry assays (see below) were infected with OE. OE negative adult males and females were housed in separate mesh cages by milkweed species treatment to prevent mating. Adults were allowed to feed ad libitum from an artificial nectar solution containing 60âmg/mL sugars (glucose/dextrose mix), 4.18âmg/mL sodium (sodium citrate), and 0.13âmg/mL potassium (potassium phosphate) (Gatorade G series, lemon-lime flavor). Nectar dishes were changed every 72âh. Adults were allowed to feed for 8d before flight. Eight adults were excluded from free-flight respirometry assays due to wing damage or premature death.
Eight species of milkweed (A. curassavica, A. exaltata, A. incarnata, A. speciosa, A. sullivantii, A. syriaca, A. tuberosa and A. verticillata) were grown from seed at Pennsylvania State University without the use of chemical pesticides. Milkweed seed was obtained from Ernst Native Seed (A. incarnata, A. speciosa, A. syriaca, and A. tuberosa; Meadville, PA) or Prairie Moon Nursery (A. exaltata, A. sullivantii, and A. verticillata; Winona, MN). A. curassavica seeds were obtained through www.OutsidePride.com (Salem, Oregon, USA). All seeds were cold-stratified for 7d at 2.2â°C and moved to a 25â°C incubator (Caron 6030) set to 24:0L:D conditions until germination. Growing conditions were similar to those described in Pocius et al.30, but milkweeds were fertilized (Osmacote, Scotts Company LLC, Marysville, Ohio, USA) at 2w and 6w during our experiment. Seedlings were sown into 36-cell seedling trays (8.25âcm deep); 4â6w post-germination seedlings were transplanted into 8.9âcm square deep perennial pots (Kord, Ontario, Canada). Milkweeds were 9w old when offered to first instar monarch larvae. All plants were healthy with undamaged leaves at the start of the experiment.
Larval feeding and survivorship
Five neonates were added to each plant inside a 40âÃâ40âÃâ60âcm mesh pop-up cage. We used a complete random block design with each block containing one cage of each milkweed species. There were 6 blocks of each milkweed species with the exception of A. exaltata (4 blocks) due to a limited number of healthy plants, for a total of 30 larvae per milkweed species (20 for A. exaltata) at the start of the experiment. All blocks were kept in the same greenhouse compartment, which was kept at ~25â°C, 16:8âL:D, 40% RH. Greenhouse temperature was recorded hourly via Thermocron sensors (Embedded Data Systems, iButton, New South Wales, Australia). Larvae were monitored for survivorship daily. Plants were watered daily, and new plants were added when the initial plants were defoliated. To reduce larval stress, we did not move larvae or take larval measurements. Larvae were only moved onto new plants when necessary until pupation. Cages were monitored for pupae starting at day 8 of the experiment. The date of pupation was recorded, and each pupa was allowed to sclerotize for 24âh before being carefully removed from each cage. Sclerotized pupae were weighed to the nearest 0.01âmg on a Mettler AJ100 balance (Mettler- Toledo LLC, Columbus, OH, USA). Pupal length and width were measured to the nearest 0.01âmm with digital calipers (Neiko Tools, USA). Individual pupae were attached to wooden skewers with small beads of hot glue and hung inside individual plastic cups for eclosion.
Flow-through respirometry
Eight days post-eclosion, gas exchange of adults in free-flight was determined via flow-through respirometry. We used a 24âV DC circulation pump to push CO2-free air generated by a Whatman Ft-IR purge gas generator (Whatman International Ltd, Maidstone, UK) into two flow paths. Each path contained a clear 1âL plastic jar, but only one jar contained an adult monarch; the other path served as the reference (i.e., no monarch present) flow path. Flow rates were controlled using a Brooks 5850E mass flow controller (Brooks Instrument, Hatfield, PA, USA; calibrated by Coastal Instruments, Burgaw, NC, USA) and a FlowBar-8 system (Sable Systems, Las Vegas, NV, USA), for the path containing the animal jar and the reference jar, respectively. Incoming CO2-free air was scrubbed of residual CO2 and H2O using a Drierite/Ascarite/Drierite scrubber column prior to entry into jars. Both jars (and attached tubing) were placed in a Percival I-36VL incubator set to 28â°C; monarchs engage in spontaneous flight at 28â°C82,83 without pre-flight warm-up via shivering thermogenesis. Air leaving the jars flowed into two separate manifolds (50âmL syringe barrels) from which air was subsampled at 200âmL/min and pulled through a LI-COR 7000 (LI-COR Biosciences, Lincoln, NE, USA) CO2/H2O analyzer and a FC-2 Differential Oxygen Analyzer (Oxzilla II; Sable Systems, Las Vegas, NV, USA), using a SS4 subsampler (Sable Systems, Las Vegas, NV, USA). During flights, a mounted blacklight bulb was turned on inside the incubator as this facilitated continuous flight performance in preliminary trials.
Prior to introduction of a butterfly to the animal jar, the system was first completely flushed with CO2-free air. After introduction of a butterfly, the jar was covered with a black cloth to minimize activity and allow recording of resting metabolic rate. The cloth was then removed, and the jar was gently moved as needed to stimulate continuous flight. After 5âmin, the jar was once again covered with the black cloth until the CO2 signal returned to a stable baseline. The full set of free-flight respirometry assays took multiple days to complete, so 8d-old butterflies reared on different milkweed species were selected randomly to avoid sampling bias and researchers were blind to monarch milkweed host. Adults were weighed immediately before each respirometry trial. After trials, wings were removed and stored at â80â°C. Abdomen and thorax mass were determined to the nearest 0.1âmg before being flash-frozen in liquid nitrogen and stored at â80â°C.
For calculations of resting- and flight metabolic rate, CO2 raw values (in ppm) first underwent a Z-transformation to recover approximate instantaneous gas exchange signals84, prior to being converted to emission rates (VCO2 in ml/Hr) using standard equations85. For calculations of respiratory quotients (RQ, i.e., VCO2/VO2), we used non-transformed CO2 and O2 traces because our O2 traces were significantly noisier than the CO2 signals. Resting metabolic rate was determined as the difference between the stable VCO2 of a butterfly at rest in the covered flight jar and the CO2-free air (prior to introduction of the butterfly). Flight metabolic rate was calculated by subtracting resting VCO2 from the average VCO2 across timepoints 50â250âs of the 5-minute flight bout (i.e., between ~0.8â4.2âmin of flight). Data acquisition was performed using a UI2 interface and Expedata software (Sable Systems, Las Vegas, NV). CO2 and O2 raw trace conversions (and Z-transformations) and analyses were automated using a customized user interface developed with Igor Pro v8.02 software.
Lipid assay
The dissected adult abdomen were dried at 60â°C for 24âh in a drying oven. The dried tissue was then weighed, placed into perforated gelatin capsules, and total lipids were extracted during a 48âh period using refluxing petroleum ether in a Soxhlet extractor apparatus86,87,88. After extraction, each abdomen was dried again for 24âh in a drying oven. Lean abdominal dry mass was subtracted from pre-extraction abdominal dry mass to obtain total tissue fat content.
Cardenolide assay
To evaluate the relative abundance of cardenolides sequestered by caterpillars reared on the different milkweed species, adult wings were dried (at 50â°C) and ground. 21â76âmg of ground tissue, spiked with 20âμg of digitoxin as internal standard, was extracted with 1.8âmL of methanol in a sonicating water bath at 55â°C for 20âmin. Wing cardenolides correlate tightly with body cardenolide concentrations46,89. After evaporating the solvent, the residue was resuspended in 0.5âmL methanol. Samples were analyzed by HPLC using a Zorbax StableBond C18 reversed phase column (5âμm, 150âÃâ4.6âmm, Agilent Technologies, Santa Clara, CA, USA) and an Agilent 1100 series instrument with diode array detection. The 15âuL injection was eluted at a constant flow of 0.7âmL/min with a gradient of acetonitrile and water as follows: 0â2âmin 16% acetonitrile; 25âmin 70% acetonitrile; 30âmin 95% acetonitrile with a final 8âmin hold. Peaks were detected by a diode array detector at 218ânm, and absorbance spectra were recorded from 200â400ânm. Peaks showing a characteristic symmetrical absorption band with a maximum between 217â222ânm were recorded as cardenolides90. Sample concentrations were quantified by relating abundances to the peak area of the internal standard.
Statistical analyses
Data were analyzed using R version 3.5.3 (R Core Team 2014). Within each experiment, data were combined across trials (6 blocks total), as blocks were not significantly different from one another. Survivorship differences were determined using a log-rank test on the KaplanâMeier survival estimates for larvae reared on each milkweed species. Pairwise log-rank tests were used to examine effects of species as this allowed us to include individuals that spent different amounts of time as larvae and pupae. A Bonferroni correction was used to adjust the significance level for pairwise comparisons (adjusted αâ=â0.0014). A one-way ANOVA was used to test for effects of larval diet on adult traits (i.e., body mass, forewing length, hindwing length, larval duration, pupal duration, thoracic mass, and abdominal lipid content), followed by Tukey HSD tests were used to assess pairwise differences. Flight muscle ratio was calculated as the ratio of thoracic mass and body mass. Flight muscle ratio values were arcsine transformed and effects of larval diet were assessed using one-way ANOVA and a Tukey HSD test to assess pairwise differences. Effects of larval diet on total wing cardenolide content were examined using a Kruskal-Wallis rank sum test, and a Dunn test for multiple comparisons was used to assess pairwise differences. Effects of larval diet on body mass-normalized average resting metabolic rate, -average free-flight metabolic rate, and average respiratory quotient were examined using one-way ANOVA, followed by Tukey HSD tests to assess pairwise differences. Spearman correlations were used to determine relationships between body mass-normalized average free-flight metabolic rate and average peak flight metabolic rate with total cardenolide content. Sexes were pooled for all analyses, as there were no significant differences when males and females were analyzed separately.
Reporting summary
Further information on research design is available in the Nature Research Reporting Summary linked to this article.
Data availability
All data are available from the corresponding author(s) on reasonable request.
References
Ehrlich, P. R. & Raven, P. H. Butterflies and plants: A study in coevolution. Evolution 18, 586 (1964).
Raguso, R. A. et al. The raison dâêtre of chemical ecology. Ecology 96, 617â630 (2015).
Kariyat, R. R. & Portman, S. L. Plantâherbivore interactions: Thinking beyond larval growth and mortality. Am. J. Bot. 103, 789â791 (2016).
Raubenheimer, D. & Simpson, S. J. Nutritional ecology and foraging theory. Curr. Opin. Insect Sci. 27, 38â45 (2018).
Goehring, L. & Oberhauser, K. S. Effects of photoperiod, temperature, and host plant age on induction of reproductive diapause and development time in Danaus plexippus. Ecol. Entomol. 27, 674â685 (2002).
Hahn, D. A. Larval nutrition affects lipid storage and growth, but not protein or carbohydrate storage in newly eclosed adults of the grasshopper Schistocerca americana. J. Insect Physiol. 51, 1210â1219 (2005).
Portman, S. L., Kariyat, R. R., Johnston, M. A., Stephenson, A. G. & Marden, J. H. Cascading effects of host plant inbreeding on the larval growth, muscle molecular composition, and flight capacity of an adult herbivorous insect. Funct. Ecol. 29, 328â337 (2015).
Johnson, C. G. Physiological factors in insect migration by flight. Nature 198, 423â427 (1963).
Harrison, R. G. Dispersal polymorphisms in insects. Annu. Rev. Ecol. Syst. 11, 95â118 (1980).
Zera, A. J. & Denno, R. F. Physiology and ecology of dispersal polymorphism in insects. Annu. Rev. Entomol. 42, 207â231 (1997).
Marden, J. H. et al. Weight and nutrition affect pre-mRNA splicing of a muscle gene associated with performance, energetics and life history. J. Exp. Biol. 211, 3653â3660 (2008).
Raguso, R. A., Ojeda-Avila, T., Desai, S., Jurkiewicz, M. A. & Arthur Woods, H. The influence of larval diet on adult feeding behaviour in the tobacco hornworm moth, Manduca sexta. J. Insect Physiol. 53, 923â932 (2007).
Cease, A. J. et al. Nutritional imbalance suppresses migratory phenotypes of the Mongolian locust (Oedaleus asiaticus). R. Soc. Open Sci. 4, https://doi.org/10.1098/rsos.161039 (2017).
Reichstein, T., Von Euw, J., Parsons, J. A. & Rothschild, M. Heart poisons in the monarch butterfly. Science 161, 861â866 (1968).
Brower, L. P., Ryerson, W. N., Coppinger, L. L. & Glazier, S. C. Ecological chemistry and the palatability spectrum. Science 161, 1349â1351 (1968).
Young, A. M. An evolutionary-ecological model of the evolution of migratory behavior in the Monarch Butterfly, and its absence in the Queen Butterfly. Acta Biotheor. 31, 219â237 (1982).
Agrawal, A. A. Monarchs and Milkweed: A Migrating Butterfly, a Poisonous Plant, and Their Remarkable Story of Coevolution. (Princeton University Press, 2017).
Batalden, R. V. & Oberhauser, K. S. Potential changes in eastern north American monarch migration in response to an introduced Milkweed, Asclepias curassavica. in Monarchs in a Changing World: Biology and Conservation of an Iconic Butterfly 215â224 (2015).
Tyler Flockhart, D. T. et al. Tracking multi-generational colonization of the breeding grounds by monarch butterflies in eastern North America. Proc. R. Soc. B Biol. Sci. 280, 20131087 (2013).
Saunders, S. P., Ries, L., Oberhauser, K. S., Thogmartin, W. E. & Zipkin, E. F. Local and cross-seasonal associations of climate and land use with abundance of monarch butterflies Danaus plexippus. Ecography. 41, 278â290 (2018).
Pleasants, J. M. & Oberhauser, K. S. Milkweed loss in agricultural fields because of herbicide use: Effect on the monarch butterfly population. Insect Conserv. Divers. 6, 135â144 (2013).
Borders, B. & Lee-Mäder, B. B. Project milkweed. in Monarchs in a Changing World: Biology and Conservation of an Iconic Butterfly. pp.190-196 (Cornell University press, 2015).
Agrawal, A. A., Petschenka, G., Bingham, R. A., Weber, M. G. & Rasmann, S. Toxic cardenolides: Chemical ecology and coevolution of specialized plant-herbivore interactions. N. Phytologist 194, 28â45 (2012).
Malcolm, S. B. Milkweeds, monarch butterflies and the ecological significance of cardenolides. Chemoecology 5â6, 101â117 (1994).
Pocius, V. M., Debinski, D. M., Bidne, K. G., Hellmich, R. L. & Hunter, F. K. Performance of early Instar Monarch Butterflies (Danaus plexippus L.) on nine Milkweed species native to Iowa. J. Lepid. Soc. 71, 153â161 (2017).
Ali, J. G. & Agrawal, A. A. Specialist versus generalist insect herbivores and plant defense. Trends Plant Sci. 17, 293â302 (2012).
Zalucki, M. P., Brower, L. P. & Alonso-M, A. Detrimental effects of latex and cardiac glycosides on survival and growth of first-instar monarch butterfly larvae Danaus plexippus feeding on the sandhill milkweed Asclepias humistrata. Ecol. Entomol. 26, 212â224 (2001).
Agrawal, A. A., Hastings, A. P., Patrick, E. T. & Knight, A. C. Specificity of herbivore-induced hormonal signaling and defensive traits in five closely related milkweeds (Asclepias spp.). J. Chem. Ecol. 40, 717â729 (2014).
Agrawal, A. A., Ali, J. G., Rasmann, S. & Fishbein, M. Macroevolutionary trends in the defense of milkweeds against monarchs. Monarch. a Chang. World Biol. Conserv. Iconic Insect. Cornell University Press, Ithaca, NY. pp. 47â59 (2011).
Pocius, V. M. et al. Milkweed matters: Monarch butterfly (Lepidoptera: Nymphalidae) survival and development on nine midwestern milkweed species. Environ. Entomol. 46, 1098â1105 (2017).
Petschenka, G. et al. Stepwise evolution of resistance to toxic cardenolides via genetic substitutions in the na+/k+-atpase of milkweed butterflies (lepidoptera: Danaini). Evolution (N. Y). 67, 2753â2761 (2013).
Agrawal, A. A. et al. Cardenolides, toxicity, and the costs of sequestration in the coevolutionary interaction between monarchs and milkweeds. Proc. Natl Acad. Sci. USA 118, e2024463118 (2021).
Marden, J. H. Variability in the size, composition, and function of insect flight muscles. Annu. Rev. Physiol. 62, 157â178 (2000).
Bicudo, J. E. P. W., Buttemer, W. A., Chappell, M. A., Pearson, J. T. & Bech, C. Ecological and Environmental Physiology of Birds. Ecological and Environmental Physiology of Birds 3 (Oxford University Press, 2010).
Bailey, E. Biochemistry of Insect Flight. in Insect Biochemistry and Function. pp. 89â176 (Springer, 1975).
Dudley, R. The biomechanics of insect flight: form, function, evolution. Annals of the Entomological Society of America 93 (Princeton University Press, 2000).
Solensky, M. J. Overview of monarch migration. in The Monarch Butterfly: Biology and Conservation 79â83 (2004).
Urquhart, F. A. & Urquhart, N. R. Monarch butterfly (Danaus plexippus L.) overwintering population in Mexico (Lep. Danaidae). Atalanta 7, 56â61 (1976).
Brower, L. P. Understanding and misunderstanding the migration of the monarch butterfly (Nymphalidae) in North America: 1857â1995. J. - Lepid. Soc. 49, 304â385 (1995).
Fisher, K. E., Adelman, J. S. & Bradbury, S. P. Employing Very High Frequency (VHF) radio telemetry to recreate monarch butterfly flight paths. Environ. Entomol. 49, 312â323 (2020).
Reppert, S. M. & de Roode, J. C. Demystifying monarch butterfly migration. Curr. Biol. 28, R1009âR1022 (2018).
Zhu, H., Gegear, R. J., Casselman, A., Kanginakudru, S. & Reppert, S. M. Defining behavioral and molecular differences between summer and migratory monarch butterflies. BMC Biol. 7, 1â14 (2009).
Heinze, S. & Reppert, S. M. Anatomical basis of sun compass navigation I: The general layout of the monarch butterfly brain. J. Comp. Neurol. 520, 1599â1628 (2012).
Zhan, S. et al. The genetics of monarch butterfly migration and warning colouration. Nature 514, 317â321 (2014).
Soule, A. J., Decker, L. E. & Hunter, M. D. Effects of diet and temperature on monarch butterfly wing morphology and flight ability. J. Insect Conserv. 24, 961â975 (2020).
Decker, L. E., Soule, A. J., de Roode, J. C. & Hunter, M. D. Phytochemical changes in milkweed induced by elevated CO2 alter wing morphology but not toxin sequestration in monarch butterflies. Funct. Ecol. 33, 411â421 (2019).
Heinrich, B. Temperature regulation of the sphinx moth, Manduca sexta. I. Flight energetics and body temperature during free and tethered flight. J. Exp. Biol. 54, 141â152 (1971).
Nicolson, S. W. & Louw, G. N. Simultaneous measurement of evaporative water loss, oxygen consumption, and thoracic temperature during flight in a carpenter bee. J. Exp. Zool. 222, 287â296 (1982).
Rothe, U. & Nachtigall, W. Flight of the honey bee IV. J. Comp. Physiol. B 158, 711â718 (1989).
Nachtigall, W., Hanauer-Thieser, U. & Mörz, M. Flight of the honey bee VII: Metabolic power versus flight speed relation. J. Comp. Physiol. B 165, 484â489 (1995).
Niven, J. E. & Scharlemann, J. P. W. Do insect metabolic rates at rest and during flight scale with body mass? Biol. Lett. 1, 346â349 (2005).
Zalucki, M. P., Parry, H. R. & Zalucki, J. M. Movement and egg laying in Monarchs: To move or not to move, that is the equation. Austral. Ecol. 41, 154â167 (2016).
Marden, J. H. & Chai, Peng Aerial predation and butterfly design: How palatability, mimicry, and the need for evasive flight constrain mass allocation. Am. Nat. 138, 15â36 (1991).
Levin, E., Lopez-Martinez, G., Fane, B. & Davidowitz, G. Hawkmoths use nectar sugar to reduce oxidative damage from flight. Science 355, 733â735 (2017).
Petschenka, G. & Agrawal, A. A. Milkweed butterfly resistance to plant toxins is linked to sequestration, not coping with a toxic diet. Proc. R. Soc. B Biol. Sci. 282, 20151865 (2015).
Petschenka, G. & Agrawal, A. A. How herbivores coopt plant defenses: Natural selection, specialization, and sequestration. Curr. Opin. Insect Sci. 14, 17â24 (2016).
Tan, W. H., Tao, L., Hoang, K. M., Hunter, M. D. & de Roode, J. C. The effects of milkweed induced defense on parasite resistance in monarch butterflies, Danaus plexippus. J. Chem. Ecol. 44, 1040â1044 (2018).
Brower, L. P. & Glazier, S. C. Localization of heart poisons in the monarch butterfly. Science 188, 19â25 (1975).
Zalucki, M. P. et al. Itâs the first bites that count: Survival of first-instar monarchs on milkweeds. Austral. Ecol. 26, 547â555 (2001).
Zalucki, M. P., Malcolm, S. B., Hanlon, C. C. & Paine, T. D. First-instar monarch larval growth and survival on milkweeds in Southern California: Effects of latex, leaf hairs and cardenolides. Chemoecology 22, 75â88 (2012).
Ziegler, R. & Van Antwerpen, R. Lipid uptake by insect oocytes. Insect Biochem. Mol. Biol. 36, 264â272 (2006).
Beenakkers, A. M. T., Van der Horst, D. J. & Van Marrewijk, W. J. A. Insect flight muscle metabolism. Insect Biochem. 14, 243â260 (1984).
Beall, G. The fat content of a butterfly, Danaus Plexippus Linn., as affected by migration. Ecology 29, 80â94 (1948).
James, D. G. Phenology of weight, moisture and energy reserves of Australian monarch butterflies, Danaus plexippus. Ecol. Entomol. 9, 421â428 (1984).
Briegel, H. Metabolic relationship between female body size, reserves, and fecundity of Aedes aegypti. J. Insect Physiol. 36, 165â172 (1990).
Hines, W. J. W. & Smith, M. J. H. Some aspects of intermediary metabolism in the desert locust (Schistocerca gregaria ForskÃ¥l). J. Insect Physiol. 9, 463â468 (1963).
Inagaki, S. & Yamashita, O. Metabolic shift from lipogenesis to glycogenesis in the last instar larval fat body of the silkworm, Bombyx mori. Insect Biochem. 16, 327â331 (1986).
Venkatesh, K. & Morrison, P. E. Studies of weight changes and amount of food ingested by the stable fly, stomoxys calcitrans (Diptera: Muscidae). Can. Entomol. 112, 141â149 (1980).
Arrese, E. L. & Soulages, J. L. Insect fat body: Energy, metabolism, and regulation. Annu. Rev. Entomol. 55, 207â225 (2010).
Mevi-Schütz, J. & Erhardt, A. Larval nutrition affects female nectar amino acid preference in the map butterfly (Araschnia levana). Ecology 84, 2788â2794 (2003).
Wassenaar, L. I. & Hobson, K. A. Natal origins of migratory monarch butterflies at wintering colonies in Mexico: New isotopic evidence. Proc. Natl Acad. Sci. USA 95, 15436â15439 (1998).
Majewska, A. A. & Altizer, S. Exposure to Non-Native Tropical Milkweed Promotes Reproductive Development in Migratory Monarch Butterflies. Insects 10, 253 (2019).
Howard, E., Aschen, H. & Davis, A. K. Citizen science observations of monarch butterfly overwintering in the Southern United States. Psyche: A Journal of Entomology 2010, https://doi.org/10.1155/2010/689301 (2010).
Satterfield, D. A., Maerz, J. C. & Altizer, S. Loss of migratory behaviour increases infection risk for a butterfly host. Proc. R. Soc. B Biol. Sci. 282, 20141734 (2015).
Petschenka, G. et al. Relative selectivity of plant cardenolides for Na+/K+-ATPases from the monarch butterfly and non-resistant insects. Front. Plant Sci. 9, 1424 (2018).
Jones, P. L., Petschenka, G., Flacht, L. & Agrawal, A. A. Cardenolide intake, sequestration, and excretion by the monarch butterfly along gradients of plant toxicity and larval ontogeny. J. Chem. Ecol. 45, 264â277 (2019).
Tao, L., Hoang, K. M., Hunter, M. D. & de Roode, J. C. Fitness costs of animal medication: antiparasitic plant chemicals reduce fitness of monarch butterfly hosts. J. Anim. Ecol. 85, 1246â1254 (2016).
Lederhouse, R. C. The effect of female mating frequency on egg fertility in the black swallowtail, Papilio polyxenes asterius (Papilionidae). J. Lepid. Soc. 35, 266â277 (1981).
Jones, R. E., Hart, J. R. & Bull, G. D. Temperature, size and egg production in the Cabbage Butterfly, Pieris rapae L. Aust. J. Zool. 30, 159â168 (1982).
Haukioja, E. & Neuvonen, S. The relationship between size and reproductive potential in male and female Epirrita autumnata (Lep., Geometridae). Ecol. Entomol. 10, 267â270 (1985).
Altizer, S. M., Oberhauser, K. S. & Brower, L. P. Associations between host migration and the prevalence of a protozoan parasite in natural populations of adult monarch butterflies. Ecol. Entomol. 25, 125â139 (2000).
Masters, A. R., Malcolm, S. B. & Brower, L. P. Monarch butterfly (Danaus plexippus) thermoregulatory behavior and adaptations for overwintering in Mexico. Ecology 69, 458â467 (1988).
Kammer, A. E. Thoracic temperature, shivering, and flight in the monarch butterfly, Danaus plexippus (L.). Z. Vgl. Physiol. 68, 334â344 (1970).
Pendar, H. & Socha, J. J. Estimation of instantaneous gas exchange in flow-through respirometry systems: A modern revision of bartholomewâs ztransform method. PLoS One 10, e0139508 (2015).
Lighton, J. R. B. Measuring Metabolic Rates: A Manual for Scientists. (Oxford University Press, 2008).
Alonso-MejÃa, A., Rendon-Salinas, E., Montesinos-Patiño, E. & Brower, L. P. Use of lipid reserves by monarch butterflies overwintering in Mexico: Implications for conservation. Ecol. Appl. 7, 934â947 (1997).
Diaz, R., Overholt, W. A., Hahn, D. & Samayoa, A. C. Diapause induction in Gratiana boliviana (Coleoptera: Chrysomelidae), a biological control agent of tropical soda apple in Florida. Ann. Entomol. Soc. Am. 104, 1319â1326 (2011).
Tschinkel, W. R. Sociometry and sociogenesis of colonies of the fire ant Solenopsis invicta during one annual cycle. Ecol. Monogr. 63, 425â457 (1993).
Fink, L. S. & Brower, L. P. Birds can overcome the cardenolide defence of monarch butterflies in Mexico. Nature 291, 67â70 (1981).
Ali, J. G. & Agrawal, A. A. Trade-offs and tritrophic consequences of host shifts in specialized root herbivores. Funct. Ecol. 31, 153â160 (2017).
Woodson, R. E. The North American Species of Asclepias L. Ann. Mo. Bot. Gard. 41, 1 (1954).
NRCS USDA. The PLANTS Database. National Plant Data Center. http://plants.usda.gov (2006).
Agrawal, A. A., Salminen, J. P. & Fishbein, M. Phylogenetic trends in phenolic metabolism of milkweeds (Asclepias): Evidence for escalation. Evolution (N. Y). 63, 663â673 (2009).
Pocius, V. M. et al. Monarch butterflies show differential utilization of nine midwestern milkweed species. Front. Ecol. Evol. 6, 169 (2018).
Pocius, V. M., Debinski, D. M., Pleasants, J. M., Bidne, K. G. & Hellmich, R. L. Monarch butterflies do not place all of their eggs in one basket: Oviposition on nine Midwestern milkweed species. Ecosphere 9, e02064 (2018).
Ladner, D. T. & Altizer, S. Oviposition preference and larval performance of North American monarch butterflies on four Asclepias species. Entomol. Exp. Appl. 116, 9â20 (2005).
Borders, B. A guide to the native milkweeds of Oregon. Xerces Soc. Invertebr. Conserv. www.xerces.org, 5, 12-23 (2012).
Acknowledgements
We thank Dr. Daniel Hahn for advice on lipid extraction methodology and Dr. Jon Harrison for helpful discussion of dietary effects on adult insect dispersal traits. This manuscript was improved by discussions and input from Anurag A. Agrawal. Research was supported by NSFâIOS 1754996 (JGA & RJS).
Author information
Authors and Affiliations
Contributions
V.M.P., R.J.S., & J.G.A. conceived the original idea and designed experiments. V.M.P. organized and planned experiments. V.M.P., S.C., S.R., & O.A.D. conducted the experiments. V.M.P., N.B.M. & J.G.A. lead the chemical analysis. V.M.P. & R.J.S. lead the respirometry analysis. V.M.P., R.J.S. & J.G.A. analyzed the data and wrote the manuscript. All authors provided critical feedback and helped shape the research, analysis and manuscript.
Corresponding authors
Ethics declarations
Competing interests
All authors declare no competing interests.
Peer review
Peer review information
Communications Biology thanks the anonymous reviewers for their contribution to the peer review of this work. Primary Handling Editors: Nicolas Desneux and Luke R. Grinham.
Additional information
Publisherâs note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the articleâs Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the articleâs Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
About this article
Cite this article
Pocius, V.M., Cibotti, S., Ray, S. et al. Impacts of larval host plant species on dispersal traits and free-flight energetics of adult butterflies. Commun Biol 5, 469 (2022). https://doi.org/10.1038/s42003-022-03396-8
Received:
Accepted:
Published:
DOI: https://doi.org/10.1038/s42003-022-03396-8