Jump to content

Equilibrative nucleoside transporter 1

From Wikipedia, the free encyclopedia
(Redirected from SLC29A1)
SLC29A1
Identifiers
AliasesSLC29A1, ENT1, Equilibrative nucleoside transporter 1, solute carrier family 29 member 1 (Augustine blood group)
External IDsOMIM: 602193; MGI: 1927073; HomoloGene: 37985; GeneCards: SLC29A1; OMA:SLC29A1 - orthologs
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)
RefSeq (protein)
Location (UCSC)Chr 6: 44.22 – 44.23 MbChr 17: 45.59 – 45.6 Mb
PubMed search[3][4]
Wikidata
View/Edit HumanView/Edit Mouse

Equilibrative nucleoside transporter 1 (ENT1) is a protein that in humans is encoded by the SLC29A1 gene.[5][6] Multiple alternatively spliced variants, encoding the same protein, have been found for this gene.[7] Expressed on red blood cell surfaces, these variants make up the Augustine blood group system.[8]

Function

[edit]

This gene is a member of the equilibrative nucleoside transporter family. The gene encodes a transmembrane glycoprotein that localizes to the plasma and mitochondrial membranes and mediates the cellular uptake of nucleosides from the surrounding medium. The protein is categorized as an equilibrative (as opposed to concentrative) transporter that is sensitive to inhibition by nitrobenzylmercaptopurine ribonucleoside (NBMPR). Nucleoside transporters are required for nucleotide synthesis in cells that lack de novo nucleoside synthesis pathways, and are also necessary for the uptake of cytotoxic nucleosides used for cancer and viral chemotherapies.[7]

Genomics

[edit]

The gene encoding this protein is located on the short arm of chromosome 6 at 6p21.2-p21.1 on the Watson (plus) strand. It is 14,647 bases in length. The encoded protein has 456 amino acid residues with 11 predicted transmembrane domains. The predicted molecular weight is 50.219 kilodaltons. The protein is post translationally glycosylated and expressed in all tissue with the apparent exception of skeletal muscle. The highest levels are found in the liver, heart, testis, spleen, lung, kidney and brain.

Interactive pathway map

[edit]

Click on genes, proteins and metabolites below to link to respective articles.[§ 1]

[[File:
FluoropyrimidineActivity_WP1601go to articlego to articlego to articlego to pathway articlego to pathway articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to PubChem Compoundgo to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to pathway articlego to pathway articlego to articlego to articlego to articlego to articlego to articlego to WikiPathwaysgo to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to article
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
FluoropyrimidineActivity_WP1601go to articlego to articlego to articlego to pathway articlego to pathway articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to PubChem Compoundgo to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to pathway articlego to pathway articlego to articlego to articlego to articlego to articlego to articlego to WikiPathwaysgo to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to article
|alt=Fluorouracil (5-FU) Activity edit]]
Fluorouracil (5-FU) Activity edit
  1. ^ The interactive pathway map can be edited at WikiPathways: "FluoropyrimidineActivity_WP1601".

Clinical significance

[edit]

Mutations in this gene have been associated with H syndrome, pigmented hypertrichosis with insulin dependent diabetes and Faisalabad histiocytosis.[9]

Alleles of this gene make up the Augustine blood group system.[8] Some of the four known variants are highly immunogenic and antibodies against them can cause acute hemolytic transfusion reaction and hemolytic disease of the fetus and newborn.[10]

See also

[edit]

References

[edit]
  1. ^ a b c GRCh38: Ensembl release 89: ENSG00000112759Ensembl, May 2017
  2. ^ a b c GRCm38: Ensembl release 89: ENSMUSG00000023942Ensembl, May 2017
  3. ^ "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. ^ "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. ^ Griffiths M, Beaumont N, Yao SY, Sundaram M, Boumah CE, Davies A, et al. (January 1997). "Cloning of a human nucleoside transporter implicated in the cellular uptake of adenosine and chemotherapeutic drugs". Nature Medicine. 3 (1): 89–93. doi:10.1038/nm0197-89. PMID 8986748. S2CID 10182379.
  6. ^ Coe IR, Griffiths M, Young JD, Baldwin SA, Cass CE (October 1997). "Assignment of the human equilibrative nucleoside transporter (hENT1) to 6p21.1-p21.2". Genomics. 45 (2): 459–60. doi:10.1006/geno.1997.4928. PMID 9344680.
  7. ^ a b "Entrez Gene: SLC29A1 solute carrier family 29 (nucleoside transporters), member 1".
  8. ^ a b Daniels G (2019). "The Augustine blood group system, 48 years in the making". Immunohematology. 32 (3): 100–103. doi:10.21307/immunohematology-2019-053. PMID 27834482.
  9. ^ Bolze A, Abhyankar A, Grant AV, Patel B, Yadav R, Byun M, et al. (2012). "A mild form of SLC29A3 disorder: a frameshift deletion leads to the paradoxical translation of an otherwise noncoding mRNA splice variant". PLOS ONE. 7 (1): e29708. Bibcode:2012PLoSO...729708B. doi:10.1371/journal.pone.0029708. PMC 3251605. PMID 22238637.
  10. ^ Daniels G (2020). "An update on the Augustine blood group system". Immunohematology. 35 (1): 1–2. doi:10.21307/immunohematology-2020-001. PMID 30908068.

Further reading

[edit]

This article incorporates text from the United States National Library of Medicine, which is in the public domain.