éåãããã
ãã®ãããã®æ°å¦ã¯ã©ã£ã¡ãã¨è¨ãã°æ¦å¿µã«è¿ãã
hatena 㧠tex æ¸å¼ä½¿ãç·´ç¿ãã¦ã
åºæ¬
A = \left\{ 2, 4, 6, 8, 10 \right\}
ãã®ãããªç¯å²ãã¯ã£ãããããã¼ã¿ã®éã¾ãã éå ã¨ãããåå¥ã®å¤ã è¦ç´ ã¨ããã
éåã¯ãã ã®ãã¤ã¾ããªã®ã§ãé çªã«æå³ã¯ãªãï¼é
åã§ã¯ãªãï¼
\left\{ 2, 4, 6, 8, 10 \right\} = \left\{ 10, 4, 2, 6, 8 \right\}
ã¾ãã ãéå ã®è¦ç´ ã§ããã¨ãããã¨ã以ä¸ã®æ§ã«æ¸ã
x \in X
éã«å«ã¾ããªãå ´åã¯
x \notin X
éåè¦ç´ ã¯ç¡éãå®ç¾©ã§ããã®ã§ãããªæãã§é¢æ°ãçªã£è¾¼ããã
ãããªæãã§å®ç¾©ãã¦ãããã
E = \left\{ x \mid x ã¯å¶æ° \right\}
éåå士ã®é¢ä¿
ããéåï¼ããã§ã¯Aï¼ãããä¸ã¤ã®éåï¼Bï¼ã®ä¸é¨ã«å«ã¾ãã¦ããã¨ãã«ããã®é¢ä¿ã å å«é¢ä¿ ã¨ãããA 㯠B ã®é¨åéåã¨ããè¨ãæ¹ãã§ããã
A \subset B
ãã ã 㯠=
ã®å¯è½æ§ãããã
ä»ã®é¢ä¿ã¨ãã¦ã¯ã
- ç©éå: A, B 両æ¹ã«å«ã¾ãã¦ããé¨åçãªéå
- åéå: A, B ã©ã¡ããã«ã¯å«ã¾ãã¦ããã¨ããéå
- å·®éå: A ã®ç¯å²ã§ã¯ããããB ã¨ã®å ±æé¨åã¯å«ã¾ãªãéå
ç¹æ®ãªéåã·ãªã¼ãº
\mathbb{Z} = \left\{ x \mid x ã¯æ´æ° \right\} \\ \mathbb{N} = \left\{ x \mid x ã¯èªç¶æ° \right\} = \left\{ x \mid x \in \mathbb{Z} ã㤠x \ge 1 \right\} \\ \mathbb{Q} = \left\{ x \mid x ã¯æçæ° \right\} = \left\{ \frac{p}{q} \mid p \in \mathbb{Z}, q \in \mathbb{Z} - \left\{ 0 \right\} \right\} \\ \mathbb{R} = \left\{ x \mid x ã¯å®æ° \right\} \\ \mathbb{C} = \left\{ x \mid x ã¯è¤ç´ æ° \right\} = \left\{ u + v \sqrt{-1} \mid u, v \in \mathbb{R} \right\}
ã¨ãã使ãç¹æ®éåç³»ã
å ã¿ã«