Konvexná funkcia
Spojitá konvexná funkcia na intervale , je význačná tým, že jej graf leží nad každou jej zostrojenou dotyčnicou. Jednoduchou a názornou pomôckou môže byť predstava grafu konvexnej funkcie na ako šálky, do ktorej možno naliať kávu. Opačný prípad tvorí konkávna funkcia. Samotná definícia je analyticky odvodená z vlastností funkčných hodnôt konvexnej funkcie vzhľadom na spojnicu krajných bodov intervalu konvexnosti. Možno povedať, že funkčné hodnoty konvexnej funkcie sú na intervale konvexnosti vždy pod spojnicou spomínaných krajných bodov.
Definícia
[upraviť | upraviť zdroj]Definíciu konvexnosti funkcie možno rozdeliť na definíciu konvexnosti funkcie a špeciálneho prípadu – rýdzej konvexnosti funkcie. Väčšinu elementárnych funkcií možno však považovať za rýdzo konkávne respektíve rýdzo konvexné. Príkladom môžu byť polynómy.
Definícia rýdzo konvexnej funkcie
[upraviť | upraviť zdroj]Nech f je funkcia spojitá na intervale . Potom hovoríme, že funkcia f je na intervale rýdzo konvexná práve vtedy, keď pre všetky čísla platí:
Definícia konvexnej funkcie
[upraviť | upraviť zdroj]Nech f je funkcia spojitá na intervale . Potom hovoríme, že funkcia f je na intervale konvexná práve vtedy, keď pre všetky čísla platí:
Intervaly konvexnosti
[upraviť | upraviť zdroj]Pri hľadaní intervalov, na ktorých je funkcia konvexná sa postupuje použitím druhej derivácie funkcie. Intervaly konvexnosti a konkávnosti funkcie delia inflexné body. V týchto bodoch funkcia mení zakrivenie. Funkcia je preto rýdzo konvexná na intervale, kde . Analogicky sa odvodí pravidlo pre interval konvexnej funkcie . Daná derivácia musí existovať. To, že funkcia je diferencovateľná nevyplýva priamo z podmienky spojitosti skúmanej funkcie, preto treba pridať podmienku diferencovateľnosti.