Аннуитет
Аннуите́т (фр. annuité от лат. annuus — годовой, ежегодный) или финансовая рента — график погашения финансового инструмента. Выплаты по аннуитету осуществляются равными суммами через равные промежутки времени. Сумма аннуитетного платежа включает в себя и основной долг, и вознаграждение.
Аннуитетом в широком смысле может называться:
- Один из видов срочного государственного займа, по которому ежегодно выплачиваются проценты и погашается часть суммы.
- Равные друг другу денежные платежи, выплачиваемые через определённые промежутки времени в счёт погашения полученного кредита, займа и процентов по нему.
- В страховании жизни — договор со страховой компанией, по которому физическое лицо приобретает право на регулярное получение согласованных сумм, начиная с определённого времени, например, выхода на пенсию[1].
- Современная стоимость серии регулярных страховых выплат, производимых с определённой периодичностью в течение срока, установленного договором страхования.
Аннуитетный график также может использоваться для того, чтобы накопить определённую сумму к заданному моменту времени. В таком случае на счёт или депозит, по которому начисляется вознаграждение, регулярно вносятся одинаковые суммы.
Виды аннуитетов по времени платежа
[править | править код]По времени выплаты первого аннуитетного платежа различают:
- аннуитет постнумерандо — выплата осуществляется в конце первого периода,
- аннуитет пренумерандо — выплата осуществляется в начале первого периода.
Коэффициент аннуитета
[править | править код]Описание
[править | править код]Коэффициент аннуитета превращает разовый платёж сегодня в платёжный ряд. С помощью данного коэффициента определяется величина периодических равных выплат по кредиту:
где — процентная ставка за один период, — количество периодов на протяжении всего действия аннуитета (количество операций по капитализации процентов). На практике возможны некоторые отличия от математического расчёта, вызванные округлением, а также неодинаковой продолжительностью месяца и года; особенно это касается последнего по сроку платежа.
Предполагается, что выплаты производятся постнумерандо, то есть в конце каждого периода. И тогда величина периодической выплаты , где — величина кредита.
Пример расчёта
[править | править код]Рассчитаем ежемесячную выплату по трехлетнему кредиту суммой 12000 долларов по ставке 6 % годовых. Поскольку выплаты будут производиться каждый месяц, необходимо привести процентную ставку из годового значения к месячному:
Подставляем в указанную выше формулу следующие значения: , . Полученный коэффициент умножаем на сумму кредита — 12000. Получаем около 364 долларов 20 центов в месяц.
Обычно погашение долга предусматривает ежемесячные или ежеквартальные выплаты, и задаётся годовая процентная ставка . Если выплаты производятся постнумерандо раз в год в течение лет, то точная формула для коэффициента аннуитета:
или по упрощенной формуле:
где (всегда показатель степени) — количество периодов = .
Представленная здесь формула коэффициента аннуитета основана на определении наращенной суммы долга с использованием формулы сложных процентов.
Кредит с аннуитетными платежами
[править | править код]Описание
[править | править код]При заключении кредитного договора стороны договориваются о процентной ставке, сроке кредитования и размере первоначального взноса а также о методике расчета ежемесячных платежей. Некоторые банки разрешают клиентам самим выбирать схему выплат — дифференцированную или аннуитетную. Они отличаются способом начисления и взимания процентов и итоговой суммой кредита. При аннуитете кредит выплачивается равными частями — размер взноса остается неизменным на протяжении всего периода кредитования[2].
Пример расчёта
[править | править код]Расчёт равных месячных платежей (X), необходимых для выплаты ипотечной ссуды (P) в 100 тыс. руб. с процентной ставкой (r) 10 % годовых/100, взятой на (n) 20 лет.
Месячный платеж ;[3]
Дата | Денежный поток |
Проценты | Погашение основного долга |
Остаток основного долга |
---|---|---|---|---|
01.01.10 | -100000,00 | 100000,00 | ||
01.02.10 | 936,64 | 797,41 | 139,23 | 99860,77 |
01.03.10 | 936,64 | 796,30 | 140,34 | 99720,44 |
01.04.10 | 936,64 | 795,18 | 141,45 | 99578,98 |
01.05.10 | 936,64 | 794,06 | 142,58 | 99436,40 |
01.06.10 | 936,64 | 792,92 | 143,72 | 99292,68 |
01.07.10 | 936,64 | 791,77 | 144,87 | 99147,82 |
... | ... | ... | ... | ... |
01.10.29 | 936,64 | 29,29 | 907,35 | 2765,69 |
01.11.29 | 936,64 | 22,05 | 914,59 | 1851,11 |
01.12.29 | 936,64 | 14,76 | 921,88 | 929,23 |
01.01.30 | 936,64 | 7,41 | 929,23 | 0,00 |
Пример расчёта с учётом количества дней в месяцах и годах
Дата | Денежный поток |
Проценты | Формула расчёта процентов |
Погашение основного долга |
Остаток основного долга |
---|---|---|---|---|---|
01.01.10 | -100000,00 | 100000,00 | |||
01.02.10 | 936,64 | 812,77 | =(1,1^(31/365)-1)*100000 | 123,87 | 99876,13 |
01.03.10 | 936,64 | 732,92 | =(1,1^(28/365)-1)*99876,13 | 203,72 | 99672,41 |
01.04.10 | 936,64 | 810,11 | =(1,1^(31/365)-1)*99672,41 | 126,53 | 99545,88 |
01.05.10 | 936,64 | 782,88 | =(1,1^(30/365)-1)*99545,88 | 153,76 | 99392,12 |
01.06.10 | 936,64 | 807,83 | =(1,1^(31/365)-1)*99392,12 | 128,81 | 99263,31 |
01.07.10 | 936,64 | 780,65 | =(1,1^(30/365)-1)*99263,31 | 155,99 | 99107,32 |
... | ... | ... | ... | ... | ... |
01.10.29 | 936,64 | 27,94 | =(1,1^(30/365)-1)*3552,24 | 908,70 | 2643,54 |
01.11.29 | 936,64 | 21,49 | =(1,1^(31/365)-1)*2643,54 | 915,15 | 1728,39 |
01.12.29 | 936,64 | 13,59 | =(1,1^(30/365)-1)*1728,39 | 923,05 | 805,34 |
01.01.30 | 811,89 | 6,55 | =(1,1^(31/365)-1)*805,34 | 805,34 | 0,00 |
Итого сумма процентов за 20 лет составляет 124668,85 руб.
Банковский расчёт аннуитета
[править | править код]По сложившейся практике банки зачастую считают аннуитетный платёж по своим формулам.
«Процентные доходы и процентные расходы по размещенным и привлеченным средствам начисляются в порядке и размере, предусмотренными соответствующим договором, на остаток задолженности по основному долгу, учитываемой на соответствующем лицевом счёте на начало операционного дня. При начислении процентных доходов и процентных расходов в расчёт принимаются величина процентной ставки (в процентах годовых) и фактическое количество календарных дней, на которое привлечены или размещены средства. При этом за базу берется действительное число календарных дней в году — 365 или 366 дней соответственно, если иное не предусмотрено соглашением сторон»[4].
Таким образом, механизм начисления процентов банк может установить соглашением сторон достаточно произвольно, например, при котором в каждом месяце 30 дней, в году 12 месяцев, в году 360 дней.
При этом надо понимать, что годовая процентная ставка равна 12-ти среднемесячным процентным ставкам при использовании для расчёта простых процентов, но не равна им при использовании помесячных сложных процентов.
Будущая стоимость аннуитетных платежей
[править | править код]Будущая стоимость аннуитетных платежей предполагает, что платежи осуществляются на приносящий проценты вклад. Поэтому будущая стоимость аннуитетных платежей является функцией как величины аннуитетных платежей, так и ставки процента по вкладу.
Будущая стоимость серии аннуитетных платежей (FV) вычисляется по формуле (предполагается сложный процент)
- ,
где r — процентная ставка за период, n — количество периодов, в которые осуществляются аннуитетные платежи, X — величина аннуитетного платежа.
Аннуитет пренумерандо в рассматриваемом случае начисления процентов по аннуитетным платежам, имеет на один период начисления процентов больше. Поэтому формула для вычисления будущей стоимости аннуитета пренумерандо приобретает следующий вид
В табличных процессорах в состав финансовых функций входит функция для вычисления будущей стоимости аннуитетных платежей. В OpenOffice.org Calc для вычисления будущей стоимости аннуитетных платежей (как постнумерандо, так и пренумерандо) применяется функция FV.
Расчёт составляющих аннуитета
[править | править код]При простых процентах
Аннуитетный платеж = Погашение ОД + Проценты
где Погашение ОД — сумма в погашение тела займа
Проценты — сумма процентов по ссуде за месяц, выплачиваются после полного погашения ОД
Проценты по кредиту = (Сумма ОД х Процентная ставка х Число дней между датами) / (100 х Число дней в году)
Где сумма ОД — сумма основного долга на дату расчёта.
Ставка — процентная ставка в текущем периоде. Если было изменение процентной ставки, берется новая ставка.
Число дней между датами — разность в днях между датами «Дата текущего платежа» и дата предыдущего платежа.[5]
При сложных процентах
Аннуитетный платеж = Погашение ОД + Проценты
где Погашение ОД — сумма в погашение тела займа
Проценты — сумма процентов по ссуде за месяц, выплачиваются ежемесячно
Проценты по кредиту = Сумма ОД х ((1+Процентная ставка/100)^((Число дней между датами)/ (Число дней в году)) −1)
Где сумма ОД — сумма основного долга на дату расчёта.
Ставка — процентная ставка в текущем периоде. Если было изменение процентной ставки, берется новая ставка.
Число дней между датами — разность в днях между датами «Дата текущего платежа» и дата предыдущего платежа.[6]
См. также
[править | править код]- Капитализация процентов
- Процентная ставка
- Дисконтированная стоимость
- Тридцать бессмертных девочек Женевы
Примечания
[править | править код]- ↑ Ефимов С. Л. Аннуитет // Экономика и страхование: Энциклопедический словарь. — Москва: Церих-ПЭЛ, 1996. — С. 5. — 528 с. — ISBN 5-87811-016-4. Архивировано 21 июня 2013 года.
- ↑ Аннуитетный платеж по ипотеке: особенности и подводные камни . РБК Недвижимость. Дата обращения: 23 декабря 2021. Архивировано 23 декабря 2021 года.
- ↑ Банковское дело: Учебник для вузов. / Под ред. Г. Белоглазовой, Л. Кроливецкой. — 2-е изд.. — СПб.: Питер, 2010. — С. 240. — 400 с. — ISBN 978-5-91180-733-7.
- ↑ ЦЕНТРАЛЬНЫЙ БАНК РОССИЙСКОЙ ФЕДЕРАЦИИ (БАНК РОССИИ). ПОЛОЖЕНИЕ О порядке определения доходов, расходов и прочего совокупного дохода кредитных организаций // Вестник Банка России : журнал. — 2015. — 13 февраля (№ 12 (1608)). — С. 3. Архивировано 20 сентября 2016 года.
- ↑ Формулы для расчёта досрочного погашения аннуитетного кредита | Калькулятор с досрочным погашением онлайн . mobile-testing.ru. Дата обращения: 13 апреля 2016. Архивировано 22 апреля 2016 года.
- ↑ Аннуитетный платеж . www.mathinary.com. Дата обращения: 11 августа 2017. Архивировано из оригинала 11 августа 2017 года.
Ссылки
[править | править код]- Аннюитет // Энциклопедический словарь Брокгауза и Ефрона : в 86 т. (82 т. и 4 доп.). — СПб., 1890—1907.
- Смирнова Е. Ю. Аннуитетные финансовые функции в таблицах Google Docs