Аннуитет

Материал из Википедии — свободной энциклопедии
Перейти к навигации Перейти к поиску

Аннуите́т (фр. annuité от лат. annuus — годовой, ежегодный) или финансовая рента — график погашения финансового инструмента. Выплаты по аннуитету осуществляются равными суммами через равные промежутки времени. Сумма аннуитетного платежа включает в себя и основной долг, и вознаграждение.

Аннуитетом в широком смысле может называться:

  • Один из видов срочного государственного займа, по которому ежегодно выплачиваются проценты и погашается часть суммы.
  • Равные друг другу денежные платежи, выплачиваемые через определённые промежутки времени в счёт погашения полученного кредита, займа и процентов по нему.
  • В страховании жизни — договор со страховой компанией, по которому физическое лицо приобретает право на регулярное получение согласованных сумм, начиная с определённого времени, например, выхода на пенсию[1].
  • Современная стоимость серии регулярных страховых выплат, производимых с определённой периодичностью в течение срока, установленного договором страхования.

Аннуитетный график также может использоваться для того, чтобы накопить определённую сумму к заданному моменту времени. В таком случае на счёт или депозит, по которому начисляется вознаграждение, регулярно вносятся одинаковые суммы.

Виды аннуитетов по времени платежа

[править | править код]

По времени выплаты первого аннуитетного платежа различают:

  • аннуитет постнумерандо — выплата осуществляется в конце первого периода,
  • аннуитет пренумерандо — выплата осуществляется в начале первого периода.

Коэффициент аннуитета

[править | править код]

Коэффициент аннуитета превращает разовый платёж сегодня в платёжный ряд. С помощью данного коэффициента определяется величина периодических равных выплат по кредиту:

,

где  — процентная ставка за один период,  — количество периодов на протяжении всего действия аннуитета (количество операций по капитализации процентов). На практике возможны некоторые отличия от математического расчёта, вызванные округлением, а также неодинаковой продолжительностью месяца и года; особенно это касается последнего по сроку платежа.

Предполагается, что выплаты производятся постнумерандо, то есть в конце каждого периода. И тогда величина периодической выплаты , где  — величина кредита.

Пример расчёта

[править | править код]

Рассчитаем ежемесячную выплату по трехлетнему кредиту суммой 12000 долларов по ставке 6 % годовых. Поскольку выплаты будут производиться каждый месяц, необходимо привести процентную ставку из годового значения к месячному:

.

Подставляем в указанную выше формулу следующие значения: , . Полученный коэффициент умножаем на сумму кредита — 12000. Получаем около 364 долларов 20 центов в месяц.

Обычно погашение долга предусматривает ежемесячные или ежеквартальные выплаты, и задаётся годовая процентная ставка . Если выплаты производятся постнумерандо раз в год в течение лет, то точная формула для коэффициента аннуитета:

или по упрощенной формуле:

,

где (всегда показатель степени) — количество периодов = .

Представленная здесь формула коэффициента аннуитета основана на определении наращенной суммы долга с использованием формулы сложных процентов.

Кредит с аннуитетными платежами

[править | править код]

При заключении кредитного договора стороны договориваются о процентной ставке, сроке кредитования и размере первоначального взноса а также о методике расчета ежемесячных платежей. Некоторые банки разрешают клиентам самим выбирать схему выплат — дифференцированную или аннуитетную. Они отличаются способом начисления и взимания процентов и итоговой суммой кредита. При аннуитете кредит выплачивается равными частями — размер взноса остается неизменным на протяжении всего периода кредитования[2].

Пример расчёта

[править | править код]

Расчёт равных месячных платежей (X), необходимых для выплаты ипотечной ссуды (P) в 100 тыс. руб. с процентной ставкой (r) 10 % годовых/100, взятой на (n) 20 лет.

Месячный платеж  ;[3]

Дата Денежный
поток
Проценты Погашение
основного долга
Остаток основного
долга
01.01.10 -100000,00     100000,00
01.02.10 936,64 797,41 139,23 99860,77
01.03.10 936,64 796,30 140,34 99720,44
01.04.10 936,64 795,18 141,45 99578,98
01.05.10 936,64 794,06 142,58 99436,40
01.06.10 936,64 792,92 143,72 99292,68
01.07.10 936,64 791,77 144,87 99147,82
... ... ... ... ...
01.10.29 936,64 29,29 907,35 2765,69
01.11.29 936,64 22,05 914,59 1851,11
01.12.29 936,64 14,76 921,88 929,23
01.01.30 936,64 7,41 929,23 0,00

Пример расчёта с учётом количества дней в месяцах и годах

Дата Денежный
поток
Проценты Формула расчёта
процентов
Погашение основного
долга
Остаток основного
долга
01.01.10 -100000,00       100000,00
01.02.10 936,64 812,77 =(1,1^(31/365)-1)*100000 123,87 99876,13
01.03.10 936,64 732,92 =(1,1^(28/365)-1)*99876,13 203,72 99672,41
01.04.10 936,64 810,11 =(1,1^(31/365)-1)*99672,41 126,53 99545,88
01.05.10 936,64 782,88 =(1,1^(30/365)-1)*99545,88 153,76 99392,12
01.06.10 936,64 807,83 =(1,1^(31/365)-1)*99392,12 128,81 99263,31
01.07.10 936,64 780,65 =(1,1^(30/365)-1)*99263,31 155,99 99107,32
... ... ... ... ... ...
01.10.29 936,64 27,94 =(1,1^(30/365)-1)*3552,24 908,70 2643,54
01.11.29 936,64 21,49 =(1,1^(31/365)-1)*2643,54 915,15 1728,39
01.12.29 936,64 13,59 =(1,1^(30/365)-1)*1728,39 923,05 805,34
01.01.30 811,89 6,55 =(1,1^(31/365)-1)*805,34 805,34 0,00

Итого сумма процентов за 20 лет составляет 124668,85 руб.

Банковский расчёт аннуитета

[править | править код]

По сложившейся практике банки зачастую считают аннуитетный платёж по своим формулам.

«Процентные доходы и процентные расходы по размещенным и привлеченным средствам начисляются в порядке и размере, предусмотренными соответствующим договором, на остаток задолженности по основному долгу, учитываемой на соответствующем лицевом счёте на начало операционного дня. При начислении процентных доходов и процентных расходов в расчёт принимаются величина процентной ставки (в процентах годовых) и фактическое количество календарных дней, на которое привлечены или размещены средства. При этом за базу берется действительное число календарных дней в году — 365 или 366 дней соответственно, если иное не предусмотрено соглашением сторон»[4].

Таким образом, механизм начисления процентов банк может установить соглашением сторон достаточно произвольно, например, при котором в каждом месяце 30 дней, в году 12 месяцев, в году 360 дней.

При этом надо понимать, что годовая процентная ставка равна 12-ти среднемесячным процентным ставкам при использовании для расчёта простых процентов, но не равна им при использовании помесячных сложных процентов.

Будущая стоимость аннуитетных платежей

[править | править код]

Будущая стоимость аннуитетных платежей предполагает, что платежи осуществляются на приносящий проценты вклад. Поэтому будущая стоимость аннуитетных платежей является функцией как величины аннуитетных платежей, так и ставки процента по вкладу.

Будущая стоимость серии аннуитетных платежей (FV) вычисляется по формуле (предполагается сложный процент)

,

где r — процентная ставка за период, n — количество периодов, в которые осуществляются аннуитетные платежи, X — величина аннуитетного платежа.

Аннуитет пренумерандо в рассматриваемом случае начисления процентов по аннуитетным платежам, имеет на один период начисления процентов больше. Поэтому формула для вычисления будущей стоимости аннуитета пренумерандо приобретает следующий вид

В табличных процессорах в состав финансовых функций входит функция для вычисления будущей стоимости аннуитетных платежей. В OpenOffice.org Calc для вычисления будущей стоимости аннуитетных платежей (как постнумерандо, так и пренумерандо) применяется функция FV.

Расчёт составляющих аннуитета

[править | править код]

При простых процентах

Аннуитетный платеж = Погашение ОД + Проценты

где Погашение ОД — сумма в погашение тела займа

Проценты — сумма процентов по ссуде за месяц, выплачиваются после полного погашения ОД

Проценты по кредиту = (Сумма ОД х Процентная ставка х Число дней между датами) / (100 х Число дней в году)

Где сумма ОД — сумма основного долга на дату расчёта.

Ставка — процентная ставка в текущем периоде. Если было изменение процентной ставки, берется новая ставка.

Число дней между датами — разность в днях между датами «Дата текущего платежа» и дата предыдущего платежа.[5]

При сложных процентах

Аннуитетный платеж = Погашение ОД + Проценты

где Погашение ОД — сумма в погашение тела займа

Проценты — сумма процентов по ссуде за месяц, выплачиваются ежемесячно

Проценты по кредиту = Сумма ОД х ((1+Процентная ставка/100)^((Число дней между датами)/ (Число дней в году)) −1)

Где сумма ОД — сумма основного долга на дату расчёта.

Ставка — процентная ставка в текущем периоде. Если было изменение процентной ставки, берется новая ставка.

Число дней между датами — разность в днях между датами «Дата текущего платежа» и дата предыдущего платежа.[6]

Примечания

[править | править код]
  1. Ефимов С. Л. Аннуитет // Экономика и страхование: Энциклопедический словарь. — Москва: Церих-ПЭЛ, 1996. — С. 5. — 528 с. — ISBN 5-87811-016-4. Архивировано 21 июня 2013 года.
  2. Аннуитетный платеж по ипотеке: особенности и подводные камни. РБК Недвижимость. Дата обращения: 23 декабря 2021. Архивировано 23 декабря 2021 года.
  3. Банковское дело: Учебник для вузов. / Под ред. Г. Белоглазовой, Л. Кроливецкой. — 2-е изд.. — СПб.: Питер, 2010. — С. 240. — 400 с. — ISBN 978-5-91180-733-7.
  4. ЦЕНТРАЛЬНЫЙ БАНК РОССИЙСКОЙ ФЕДЕРАЦИИ (БАНК РОССИИ). ПОЛОЖЕНИЕ О порядке определения доходов, расходов и прочего совокупного дохода кредитных организаций // Вестник Банка России : журнал. — 2015. — 13 февраля (№ 12 (1608)). — С. 3. Архивировано 20 сентября 2016 года.
  5. Формулы для расчёта досрочного погашения аннуитетного кредита | Калькулятор с досрочным погашением онлайн. mobile-testing.ru. Дата обращения: 13 апреля 2016. Архивировано 22 апреля 2016 года.
  6. Аннуитетный платеж. www.mathinary.com. Дата обращения: 11 августа 2017. Архивировано из оригинала 11 августа 2017 года.