Pãªãã°Q(å«æ)
Cè¨èªã§æ¸ãã¨ã!P||Qã¨åã
ifã§æ¸ãã¨ãif P then Q ã®å¾ãã« else 1 ãã¤ãã¦ãããã¨ããæããã
ãªããPãå½ãªãã°ãQã®çå½ã«ããããããPãªãã°Qããçãªã®ã
P | Q | Pãªãã°Q | ä¾ããã®ä»äºãæåããªããã°è¾è¡¨ãåºãã |
0 | 0 | 1 | ä»äºãæåãã¦ãã¤è¾è¡¨ãåºããªãã£ã |
0 | 1 | 1 | ä»äºãæåããã«ããããããï¼ä½ãä»ã®çç±ã§ï¼è¾è¡¨ãåºãã |
1 | 0 | 0 | ä»äºã失æããã«ããããããè¾è¡¨ãåºããªãã£ã |
1 | 1 | 1 | ä»äºã失æãã¦è¾è¡¨ãåºãã |
ããªãã¡ãå ã®å®£è¨ã§ã¯ä»äºãæåããå ´åã®ãã¨ã¯ä½ãè¨ã£ã¦ããªãã®ã§ãããããè¾è¡¨ãåºãããåºãã¾ããæ¬äººã®èªç±ã§ããã
http://ja.wikipedia.org/wiki/%E5%90%AB%E6%84%8F
è«çå¦ã«ãããããªãã°ãã¯ãæ¥å¸¸ä¼è©±ã§ã®ããªãã°ãã¨éããé¨åãããããã«ãã®ããã«åä»ããããããä¼¼ã¦éãªããã®ã§ããã¨è§£éããã®ãå®å ¨
è«çå¦ã«ããããP ãªãã° Qãã¯ããP ã§ãªãã㨠Q ã§ãããã®å°ãªãã¨ãä¸æ¹ãæ£ãããã®çãè¨ãæããªã®ã§ããã
ãªãããAãªãã°Bãã¯ãAâBã§ã¯ãªããAâBã¨æ¸ãã®ã
ãå«æ (implication) A â B (A â B, A â B). â¦æå³â¦A ãªãã° B. ã
ã¨ããè¨è¿°ãè¦ãããã®ã§ãããA â B (A â B, A â B) ã®ééã
ã§ã¯ãªãã§ãããã? A â Bãã ã¨æå³ãåããã®ã§ããã
A â B ã A â B ã«å¯¾å¿ããã®ã ã¨ããã¨æå³ãåããã¾ãããä»ã®ã¨ããã®èªåã®è§£éã¯æ¬¡ã®ãããªç©ã§ãï¼
ãã³å³ã§æ¸ãã¨ãA â B ã¯ã大ããªåAã®ä¸ã«å°ããªåBãå«ã¾ãã¦ãã
http://alohakun.blog7.fc2.com/blog-category-10.html
ç¶æ ã§ããããã¨ãBã«å ¥ã£ã¦ããå ã¯ãå¿ ãAã«å ¥ã£ã¦ãããã¨è¨ããã¨ã
è¨ããã®ã§ãB â A ã¯è¨ãã¾ãããA â B ã¯è¨ãã¾ããã
åç
ãã®è¨å·æ³ã¯ãã¢ãã«ç±æ¥ãã¾ãããã¢ãã¯ç¾ä»£çãªè«çå¼ã®è¡¨è¨æ³ã
æåã«çºæãã人ãªãã ãã©ããã®ãã¢ããæ¸ãã1889å¹´ã®ã©ãã³èªã®è«æã"Arithmetices principia, nova methodo exposita"
ã§ã¯ã
ãB is a consequence of the proposition A
ãBã¯Aã®å¸°çµã§ããã¨ããé¢ä¿ãã
ãB C A
ã¨è¡¨è¨ãã¦ã¾ãããCã¯consequenceï¼ã表ããã©ãã³èªã®åèªï¼ã®é æåã§ãã
ããããèªç¶ã«ããã®å対ã®é¢ä¿ãããªãã¡ããA deduces the proposition B
ãAã¯Bãå°åºããï¼ã¤ã¾ããAãªãã°Bï¼ã表ããè¨å·ã¨ãã¦ãCãã²ã£ããè¿ããè¨å·ãå°å ¥ããã¾ãããã§ããã®ãã¢ã
ã®å½±é¿ãå¼·ãåããã®ãã©ãã»ã«ã§ããã©ãã»ã«ã¯ãã¢ãã®è¡¨è¨æ³ãåèã«ã
ã²ã£ããè¿ã£ãCãå¹³ã¹ã£ããã¤ã¶ããè¨å·ãããªãã¡ãâããå«æè¨å·ã¨ãã¦
æ¡ç¨ããããã§ãããã®è¨å·æ³ã¯Principia Mathematicaã§ä½¿ãããããã
è«çå¦è ã®ããã ã§ä¸æ°ã«åºã¾ãããã¨ãã°ãã£ã¼ããªãããæç§æ¸ã§ã¯
ãã®è¡¨è¨æ³ãæ¡ç¨ãã¦ã¾ãããã®ãã¢ãã«ç±æ¥ãã表è¨æ³ã¯ãç¾ä»£çãªéåè«ã®è¨å·æ³ãå®çãããã
http://alohakun.blog7.fc2.com/blog-category-10.html
åã«åºæ¥ããã®ã§ãéåè«ã§ã®è¨å·æ³ã¨ã¯åºå¥ãã¦èããå¿ è¦ãããã¾ãã
è«çå¦ã§ãã®è¨å·ãã§ã¦ããã¨ãã«ã¯ãã¨ããããã¯éåè«çãªæå³ã¯åãé¢ãã¦
èããããã«ãã¦ãã ããã