ããã«ã¡ã¯ãAWS re:Invent ãã帰å½ãã a2 (@Atsuhiro_tim) ã§ããããå®¶ããµã©ããã¤ãã¦ã $5 ã§ããã®ç¾å³ããã¨å®ãã«æ¶ãæµãã¦ãã¾ãã
ãã¦ãAWS re:Invent 2024 ã®ã»ãã·ã§ã³ã«ã¿ãã°ãè¦ãã¨ãä»å¹´ã GenAI ãçå¨ãæ¯ãã£ã¦ãããã¨ããããã¾ãã
æ¨å¹´ã¯ Gen AI x ãã ãå¤ãã£ãã®ã§ãããä»å¹´ã¯ä¸æ©é²ãã§ã RAG x ãã ã Agent x ãã ãåºã¦ãã¾ãããRAG ã«ã¤ãã¦ã¯æ©è½ãªãªã¼ã¹ã®ãã¥ã¼ã¹ã¯èªèãã¦ãããã®ã®ãå®éã«è§¦ããã¨ããªãã£ãã®ã§ãä»åã® re:Invent ã§ Gen AI ã RAG é¢é£ã®ã»ãã·ã§ã³ã«åå ãã¦ãã¾ãããè¤æ°ã®ã»ãã·ã§ã³ã®å¦ã³ãã¾ã¨ãã¦ã·ã§ã¢ãããã¨æãã¾ãã
åå ããã»ãã·ã§ã³ï¼
- Explore generative AI use cases with LangChain and Amazon Bedrock TNC301
- DEV336-R | Deep dive into Claude 3.5: Unlocking AI potential on AWS
- SAS405 | SaaS and RAG: Maximizing generative AI value in multi-tenant solutions
- Build a cost-effective RAG-based gen AI application with Amazon Aurora [REPEAT] DAT313-R1
- AWS Jam: Generative AI (sponsored by NVIDIA) GHJ305
RAG (Retrieval-Augmented Generation) ã¨ã¯
ã ãã ãèªç¥ãåºãã£ã¦ãã¦ãã¾ããã RAG 㯠Retrieval-Augmented Generation ã®ç¥ã§ãã
äºåã« document ãªã©ã chunk ã«åå²ããä¸ã§ç¹å¾´éæ½åº *1 ããã¦ä¿åãã¦ãããããã³ããï¼ã¯ã¨ãªï¼ã«å¯¾ãã¦é¢é£ããæ å ±ãç¹å¾´éããæ¤ç´¢ãé¢é£ãã document ãçºè¦ããã®ã¡ããã®æ å ±ããã¨ã«åçãçæããæè¡ã§ãã
åç´ã« LLM ã ãã使ã£ã¦åçãçæããã¨ãLLM ã¯å¦ç¿ãããã¼ã¿ã®ä¸ã«ããæ å ±ããè¿ããã¨ã§ããã質åã®ç¨®é¡ã«ãã£ã¦ã¯åçã®ç²¾åº¦ãè½ã¡ã¦ãã¾ãã¾ããä¾ãã°ãã«ããã·ã®ç¤¾å¤ç§ã®æ å ±ã¯å½ç¶å¦ç¿ãã¼ã¿ã«ã¯å«ã¾ããªãã®ã§ãã«ããã·ã®ããã¸ã§ã¯ãã«ã¤ãã¦è³ªåãã¦ããåãããªãã¨åçãããããããããåã®åçããã¦ãã¾ãã¾ãï¼hallucination ã¨å¼ã°ãã¾ãï¼ã
RAG ãç¨ããã¨ãLLM ã®èªç¶è¨èªãå¦çããè½åãæ´»ç¨ãã¤ã¤ãå ã¨ãªãæ å ±ã¯ LLM ã®å¤ãããåå¾ãããã¨ãã§ãã¾ããä¿åããã document ãè§£éããçµæãè¿ãã®ã§åçã®ç²¾åº¦ãé«ããã¾ããåçãçæããæ ¹æ ã¨ãªã£ãå ã®ææ¸ã«ã¢ã¯ã»ã¹ãããã¨ãã§ãããããçå½ãæ¤è¨¼ãããã¨ãå¯è½ã§ãã
RAG ã®ããããæ´»ç¨ä¾ã¯ã社å å°ç¨ãã£ãããããã§ããä¾ãã°ä¼ç¤¾ã®å´åè¦å®ã«é¢ããè³æããããããç¹å¾´éæ½åºã㦠index ãã¦ããã°ãHR ã¡ã³ãã¼ã®ä»£ããã«èªç¤¾ã®ã³ã³ããã¹ãã«åºã¥ãã¦åçãã¦ããã¾ãã
ä½è«ã§ãããç§ãå人çã«æç¨ãã¦ãã Perplexity ã¨ãããµã¼ãã¹ã¯ã質åãããã¨ãã¤ã³ã¿ã¼ãããæ¤ç´¢ã®çµæãå ã«åçãçæãããªã³ã¯ãæãã¦ããã¾ãã以åã¯ãæ¤ç´¢âããã¤ãã®ãµã¤ããèªãâçè§£ãã¦ã¾ã¨ãããã¨ãã¦ãã¾ããããä»ã¯ããã¼ã丸ãã¨å ¨ã¦ Perplexity ã«ç½®ãæããã¾ãããPerplexity ããã¤ã³ã¿ã¼ãããã Knowledge Base ã«è¦ç«ã¦ã RAG ã®ä¸ç¨®ã«æãã¾ãã
Amazon Bedrock Knowledge Base ã® Vector Data Store ã¯è²ã 鏿ã§ãã
ç¹å¾´éã¨å ã®ææ¸ãä¿åãã¦ãããã¼ã¿ãã¼ã¹ã Knowledge Base ã¨ããã¾ããRAG ãå®è¡ããã«ã¯ãã® Knowledge Base ãå¿ è¦ã§ãã
Amazon Bedrock ã§ã Knowledge Base æ©è½ãæä¾ããã¦ããã®ã§ãããç¹å¾´éãã¼ã¿ãä¿åãããã¼ã¿ã¹ãã¢ã¯ Knowledge Base æ©è½èªä½ã«ã¯å«ã¾ãã¦ãããã使ç»é¢ã§ä¿åå ãæå®ãã¾ãã
Knowledge Base ã®ä½ææãããã¦æ°è¦ã§ãã¼ã¿ã¹ãã¢ãä½ãå ´åã¯ã2024å¹´12æ12æ¥æç¹ã§ã¯ä»¥ä¸ã鏿ã§ãã¾ããã
- Amazon OpenSearch Serverless
- Amazon Aurora PostgreSQL Serverless
- Amazon Neptune Analytics (GraphRAG)
æ¢åã®ãã¼ã¿ã¹ãã¢ãå©ç¨ããå ´åã¯ãä¸è¨ã«å ãã¦ä»¥ä¸ã鏿ã§ããããã§ãã
- Pinecone
- Redis Enterprise Cloud
åãã¯ããã©ã«ãã® Amazon OpenSearch Serverless ã鏿ããã®ãè¯ãã¨æãã¾ãããWorkshop ã§åããã¼ãã«ã«ããæ¹ã AWS Solutions Architect (SA) ã®æ¹ã« Amazon OpenSearch Serverless ãé«ããã¨ã«ã¤ãã¦æå¥ãè¨ã£ã¦ãã¾ããï¼æ£ç¢ºãªè±èªã¯èãåããªãã£ãã®ã§ããã æ¦ããããªæãã§ããï¼ãIndex ããããªãã®ãã¼ã¿éã«ãªãããããã³ã¹ãã¯ç£è¦ãã¦ãããæ¹ãè¯ãããã§ãã
ãã ããç¹å¾´éãèªåã§æ½åºãã¦ãããæ©è½ã¯ Amazon OpenSearch Serverless ã«ãããªãã¨ã®ãã¨ã§ããããã£ãå®è£ ã»éç¨ã¯èªåã§è¡ããã¨ãèªèããä¸ã§ãã³ã¹ãã¨ã®ãã©ã³ã¹ãèãã¦ä»ã®ãã¼ã¿ã¹ãã¢ãæ¤è¨ãã¦ãã ããã
ã¡ãªã¿ã«ã鏿è¢ã®ä¸ã¤ã«ãã Pinecone ã§ãããæåãããã§ããç§ã¯ Knowledge Base ã¯è©³ãããªããç¥ããªãã£ãã®ã§ãããExpo ã®ãã¼ã¹ã§è©±ãèãã¦ã¿ãã¨ããã大éã®ã¯ã¼ã¯ãã¼ãããã伿¥ã§ã1/100 以ä¸ã®ã³ã¹ãåæ¸ã«æåããäºä¾ãããããããå®ãããã§ãã
ã¦ã¼ã¶ã¼ã«ç´æ¥ RAG ç¸å½ã®æ©è½ãæä¾ãããããªå ´åã¯ã顧客ã«å¿ãã¦ãã¼ã¿éãå¢ãã¦ããã®ã§ããããã£ãå¤é¨ãã¼ã¿ã¹ãã¢ã®æ¤è¨ãå¿ è¦ã«ãªãããã§ãã
ãã«ãããã³ãã®èæ ®
ãã«ãããã³ããµã¼ãã¹ã§ RAG ãæä¾ããéã«ãä»ã®ä¼æ¥ã®ãã¼ã¿ã«ã¢ã¯ã»ã¹ã§ããªãããã«å¶å¾¡ãã Workshop ã«ãåå ãã¾ããã
workshop ã®å 容ã¯ãã¡ãã§ãã
catalog.us-east-1.prod.workshops.aws
Workshop ã§ç¨ããæ§æã¯ä»¥ä¸ã®ããã
æ§æå³ã®å·¦ã®æ¹ããã¼ã¿ã Knowledge Base ã«æå ¥ããããã¼ã§ãå³ãã¦ã¼ã¶ã¼ã®ããã³ãããã RAG ãå®è¡ããããã¼ã§ããKnowledge Base ã¯ããã³ããã¨ã«ç¨æããã¦ãã¾ãã
å³ã«ã¯æ¸ããã¦ãã¾ããããã¦ã¼ã¶ã¼ã®ã¯ã¨ãªãå¦çãã lambda (å³)ã§ã¯ãããã³ãID㨠Knowledge Base ID ã®å¯¾å¿ã DynamoDB ã«ä¿åããåçã«ã¢ã¯ã»ã¹ãå¶å¾¡ããä»çµã¿ã§ãã
ä»ã® lambda ã§ãããã¼ã¿ãã©ã®ããã³ãã«å±ãã¦ããããæèãã¦å¦çããå¿ è¦ãããããã®å³ã ã¨ãåè¨ã§ 4 ç®æã§ããã³ãåé¢ãèæ ®ãã¦ãã¾ãã
çç´ã«ãç ©éã ãªã¨æãã¦ãã¾ãã¾ããã
ãã¡ãããå®éã®ãµã¼ãã¹æä¾ã§ã¯ Lambda ã§ã¯ãªã Compute Instance ã使ã£ããã¨ãã¦ã¼ã¹ã±ã¼ã¹ãã¨ã«å·®åã¯çºçãã¾ããããããã«ããè¤æ°ã®ç®æã§åãæ¨©éå¶å¾¡ãå®è¡ããå¿ è¦ãããããã¾ããã¨å ±éåã§ããã®ããæ¹ä¿®ããéã«ä¿®æ£æ¼ããèµ·ããªãã®ããä¸å®ã«ãªãå³ã§ãã
誤ã£ã¦å¥ã®ããã³ãã® Knowledge Base ã«ãã¼ã¿ãå ¥ãã¦ãã¾ã£ã¦ãæ°ã¥ãã«ããããªã®ãæ°ã«ãªãã¾ãããããã«ãããã³ãã§ RAG ãæä¾ãããå ´åã¯ãä¸åº¦ SA ããã«ç¸è«ããã®ãè¯ãããã§ãã
ã³ã¹ãæé©åã¯ã¢ãã«é¸æãã
å ·ä½ã®ã·ããªãªãæ³å®ã㦠RAG ã®ã³ã¹ãæé©åã«ã¤ãã¦è°è«ãããã»ãã·ã§ã³ã«ãåå ãã¾ããã大ã¾ãã«ä»¥ä¸ã®ãããªã·ããªãªã§ããã
- 大ããããå°ããããããªãã¯ã¼ã¯ãã¼ã
- LLM 㯠Claude 3.5 Sonnet
- embedding 㯠Titan Text V2
- data store 㯠Amazon Aurora PostgreSQL
以ä¸ã®ããã«ãLLM ã®å¼ã³åºããã³ã¹ãã®ã»ã¨ãã©ãå ãã¦ããã·ããªãªã§ãã
å®éã®éç¨ã§ã¯ãããã£ããã©ã³ã¹ã«ãªããã¨ãçãããªãããã§ã以ä¸ã®ãããªå¯¾çãææ¡ããã¾ããã
- Claude 3.5 Haiku ã使ã
- å¿ ããã大ããã¢ãã«ã使ããã¨ãè¯ãããã§ã¯ãªãã
- Sonnet ã§ã¯ãªãå°ããã¢ãã«ã® Haiku ã§ãååãªæ§è½ã¯ããããããã response ãæ©ããªã£ã¦ä½é¨ãè¯ããªãã±ã¼ã¹ãããã
- ããã³ãããæ¹åãã
- å¿ è¦ä»¥ä¸ã«é·ãããã³ãããçããã
- é©åãªããã³ãããè¦ã¤ããããã«å®é¨ãç¹°ãè¿ããã¨ã大äº
- é©åãªãã£ã³ã¯ãµã¤ãºãè¦æ¥µãã
- å°ãããããã£ã³ã¯ã¯ index size ãå¢å ãããæ¤ç´¢ã«ã³ã¹ãããããããã«ãªã
- 大ãããããã£ã³ã¯ã¯ LLM ã®ã³ã³ããã¹ãé·ãè¶ ãã¦ã³ã¹ãå¢ã«ã¤ãªãã
ä»ã«ãããããã質åã®ããã³ããã¯çµæããã£ãã·ã¥ãã¦è¿ããã¨ã§ã³ã¹ã忏ããæ¹æ³ãè°è«ããã¾ããã
ããã³ããã¯èªç¶è¨èªãªã®ã ãããå®å ¨ä¸è´ãããã¨ã¯å°ãªããã©ããã£ã¦ãã£ãã·ã¥ããã®ãçåã«æãã¾ãããããããã³ãããæ¸ãå§ãããããäºæ¸¬è£å®ã§æ®ãã®æç« ãææ¡ããããã¨ã§ãã£ãã·ã¥ããããããã¨ããææ³ã§ãããæ¢åã®æ¤ç´¢ãµã¼ãã¹ãåæ§ãªã®ããããã¾ããããäºæ¸¬è£å®ã«ä½é¨åä¸ä»¥å¤ã®å¹æãããã®ã¯é¢ç½ãã¢ã¤ãã¢ã ã¨æãã¾ããã
ãã¼ã ã«ããã·ã¯ 9ä½ï¼
æå¾ã«ãGenerative AI Jam ã«ã«ããã·ã¡ã³ãã¼ã§åå ãã話ã§ãã70ãè¶ ãããã¼ã ã®ä¸ã9ä½ã«ãªãã¾ãã ð (Table 41 ã§ã)
Jam ã¨ã¯ãåé¡ãè§£ãã¦ãã¼ã ã®å¾ç¹ãç«¶ãã²ã¼ã å½¢å¼ã®å¦ç¿ã¤ãã³ãã§ããï¼è©³ç´°ã¯å¼ç¤¾ã® Taku ããã®ããã°ãåç §ãã¦ãã ããã*2 ï¼
ãç§ãåªåããã¾ããçãªãã¨ãè¨ã£ã¦ã«ããã·ã¡ã³ãã¼ãé£ãã¦åå ãããã§ãããåªåã«ã¯å ¨ç¶å±ãããæããã£ãã§ãããåªåã§ããã£ã¦ããããåå ããã®ã«ãã¨æå¥ããããã¾ãããããã¯ç¥ãã¾ããã
å·»ãè¾¼ãã ã¡ã³ãã¼ããæå¤ã«é¢ç½ããããã¨å¾ã ã« Gen AI ã«æã¾ã£ã¦ããã®ã§ã社å çã«ãããããé²ãããããªã£ã¦ãã¾ãããè¨ç»éãã§ãã
Jam ã GameDay ã¯æ¥½ãã¿ãªããç¥ããªããµã¼ãã¹ã触ã£ã¦å¦ã¹ãæé«ã®ã»ãã·ã§ã³ã®ä¸ã¤ã§ããã¿ãªããããã²åå ãã¦ã¿ã¦ãã ããã
çµããã«
å®éã« RAG ãåããããã¨ã¯ãªãã£ãã®ã§ãããWorkshop ãã»ãã·ã§ã³ãéãã¦æè¦ãã¤ãããã¨ãã§ãã¾ããã
äºå®ãç«ã¦ãæã¯ RAG ã®ã»ãã·ã§ã³ãå¤ãã¦é£½ãããã¨æã£ã¦ãã¾ãããããã¼ã¿ã¹ãã¢ãããã³ãåé¢ãã³ã¹ãã«ã¤ãã¦ãããã工夫ã®ãããããã£ã¦ãé¢ç½ãã£ãã§ãã
æ¢ã«é¸æè¢ã¯ããããããã¾ããAmazon Bedrock ã®æ©è½æ¡å ã®ã¹ãã¼ããããã¾ãããé£ããæè¡ãç°¡åã«è©¦ããããã«ãªã£ã¦ãã¾ããã¨ãããã試ãã¦ã¿ã¦ãã ããï¼ Letâs RAG!
ã«ããã·ã§ã¯æè¡ã¨ããå®¶ã好ãã§ Letâs RAG ãªã½ããã¦ã§ã¢ã¨ã³ã¸ãã¢ãåéãã¦ãã¾ãããå¿åãå¾ ã¡ãã¦ããã¾ãï¼
*1:èªé¢ã®é½åã§ç¹å¾´éã»ç¹å¾´éæ½åºã«ã¤ãã¦ã®èª¬æã¯çç¥ãã¾ããä¸ã®ä¸ã«æ°å¤ãã解説è¨äºãåç §ãã ããã