Vai al contenuto

Fibrato tangente

Da Wikipedia, l'enciclopedia libera.
Il fibrato tangente di una circonferenza. Ad ogni punto è associata la retta tangente. Le rette tangenti sono tutte disgiunte e si muovono "con continuità": il fibrato può quindi essere visualizzato come nella seconda figura.

In topologia differenziale il fibrato tangente a una varietà differenziabile è l'insieme formato dall'unione disgiunta di tutti gli spazi tangenti ai punti di . Questo insieme è dotato di una struttura di varietà differenziabile, di dimensione doppia di quella di , ed è generalmente visualizzato come fibrato vettoriale

su , in cui la controimmagine di un punto è proprio lo spazio tangente al punto.[1]

Sia una varietà differenziabile. Il fibrato tangente di è l'unione disgiunta di tutti gli spazi tangenti ai punti di :

Un punto di è quindi una coppia , dove è un punto di e un vettore tangente a in , cioè un elemento dello spazio tangente di in

La proiezione

manda il punto in

Varietà differenziabile

[modifica | modifica wikitesto]

Lo spazio è dotato di una struttura di varietà differenziabile, che porta ad essere un fibrato vettoriale differenziabile. La struttura può essere definita nel modo seguente. La struttura differenziabile di è data da un insieme di carte

Ad ogni carta di si associa la carta seguente per :

In questa scrittura, lo spazio tangente di un punto in è identificato con stesso. Questo insieme di carte dà effettivamente luogo a un atlante di carte compatibili e quindi a una struttura di varietà differenziabile.

Se ha dimensione , il fibrato tangente ha dimensione .[2]

Funzioni differenziabili

[modifica | modifica wikitesto]

Ogni funzione differenziabile

tra varietà differenziabili (non necessariamente della stessa dimensione) induce una funzione differenziabile

fra i corrispettivi fibrati. La funzione è definita nel modo seguente:

Campi vettoriali

[modifica | modifica wikitesto]
Lo stesso argomento in dettaglio: Campo vettoriale.
A differenza della sfera, il toro ha caratteristica di Eulero nulla: esistono quindi dei campi vettoriali (tangenti) mai nulli sul toro; ad esempio, quello mostrato in figura.

Un campo vettoriale su una varietà differenziabile è una funzione che associa ad ogni punto di un vettore tangente a . In altre parole, è una sezione del fibrato tangente, ovvero una funzione

tale che sia la funzione identità su . Generalmente si richiede implicitamente che il campo vettoriale sia liscio, ovvero che la sezione sia una funzione differenziabile.

L'esistenza di campi vettoriali mai nulli è determinata dalla caratteristica di Eulero di : un campo mai nullo esiste se e solo se .

Orientabilità

[modifica | modifica wikitesto]

Il fibrato tangente è sempre una varietà orientabile, anche quando non lo è.

Fibrati banali e non banali

[modifica | modifica wikitesto]

Localmente, come per ogni fibrato vettoriale, il fibrato tangente è esprimibile come prodotto

dove è un aperto, sufficientemente piccolo, di . Globalmente il fibrato tangente può non essere un prodotto. Infatti non esiste a priori nessun modo di identificare i vettori di due spazi tangenti e corrispondenti a spazi differenti.

Una varietà differenziabile il cui fibrato tangente è banale è detta parallelizzabile. Una -varietà è parallelizzabile se e solo se esistono campi vettoriali mai nulli, che in ogni punto formano vettori indipendenti di (ovvero una base). L'esistenza di queste basi è proprio ciò che serve per poter identificare i punti di due spazi tangenti differenti, fissando delle coordinate valide in tutti gli spazi tangenti.

Ad esempio, il fibrato tangente della circonferenza è esprimibile come prodotto , come illustrato in figura. Il fibrato tangente della sfera bidimensionale non è però esprimibile come prodotto: per il teorema della palla pelosa non esistono infatti campi vettoriali mai nulli su .

In generale, affinché una varietà sia parallelizzabile è necessario che abbia caratteristica di Eulero nulla. Non è però vero il viceversa: esistono varietà con caratteristica di Eulero nulla che non sono parallelizzabili.

  1. ^ G. Gentili, F. Podestà, E. Vesentini, Lezioni di geometria differenziale, Torino, Bollati Boringhieri, 1995, p. 29.
  2. ^ Edoardo Sernesi, Geometria 2, Torino, Bollati Boringhieri, 1994, pp. 241-242.

Voci correlate

[modifica | modifica wikitesto]
  Portale Matematica: accedi alle voci di Wikipedia che trattano di Matematica