Ugrás a tartalomhoz

Kvaterniócsoport

Ellenőrzött
A Wikipédiából, a szabad enciklopédiából

Kvaterniócsoportnak nevezzük (és rendszerint Q8-cal jelöljük) azt a nyolcelemű csoportot, amelyet az alábbi generátorok és definiáló relációk határoznak meg:

Az egységelemet szokás szerint jelöli, szokásos jelölése , és az elemeket rendre a szimbólumokkal jelöljük. (A kvaterniócsoportban nincs definiálva az összeadás, tehát a mínuszjelek itt nem az ellentettképzést jelölik, csak puszta szimbólumok. Azonban a csoport beágyazható a kvaterniók algebrájába (Q8 a négy bázis-egységvektor által generált szorzáscsoport), és itt a mínuszjeles elemek éppen egybeesnek a bázis-egységvektorok ellentettjeivel.

A kvaterniócsoport tehát olyan nyolcelemű csoport, amelyet az elemek alkotnak, ahol 1 az egységelem, és az összes többi elem a négyzetgyöke. , továbbá . Nem kommutatív.

A kvaterniócsoportot William Rowan Hamilton fedezte fel a 19. században.

Cayley-táblázat

[szerkesztés]

A kvaterniócsoport szorzótáblája a következő:

1 −1 i −i j −j k −k
1 1 −1 i −i j −j k −k
−1 −1 1 −i i −j j −k k
i i −i −1 1 k −k −j j
−i −i i 1 −1 −k k j −j
j j −j −k k −1 1 i −i
−j −j j k −k 1 −1 −i i
k k −k j −j −i i −1 1
−k −k k −j j i −i 1 −1

Tekintve, hogy a kvaterniócsoport nem kommutatív, lényeges, hogy a fenti táblázatban a bal szélső oszlopban lévő elemmel szorzunk balról, és a legfelső sorban lévő elemmel szorzunk jobbról.

Alapvető tulajdonságok

[szerkesztés]

A kvaterniócsoport

Analógia a vektoriális szorzattal

[szerkesztés]

A háromdimenziós euklideszi tér bázis-egységvektorait a szokásos módon i-vel, j-vel és k-val jelölve, ezek vektoriális szorzása analóg módon viselkedik a kvaterniócsoportban érvényes szorzási szabályokkal:

Források

[szerkesztés]