Python ã® scikit-learn(sklearn)ã使ã£ã¦ã©ã³ãã ã»ãã©ã¬ã¹ãåæãè¡ãéã®æ å ±ã«ä¹ããã£ããããã¦ã§ãã«æ²è¼ããã¦ããæ å ±æºã®ç°¡æãªãã¸ããªãã¤ãã£ã¦ã¿ã¾ããã 1. Python sklearnã¢ã¸ã¥ã¼ã«ã§ ã©ã³ãã ã»ãã©ã¬ã¹ãâ¢ã¢ãã« ãè¡ãã³ã¼ãæ¸å¼ tma15 ãã Qiitaè¨äº ãPythonã§Random Forestã使ãã from sklearn.ensemble import RandomForestClassifier trainingdata = [[1, 1], [2, 2], [-1, -1], [-2, -2]] traininglabel = [1, 1, -1, -1] testdata = [[3, 3], [-3, -3]] model = RandomForestClassifier() model.fit(traini
{{#tags}}- {{label}}
{{/tags}}