An end-to-end platform built on PyTorch 1.0 that is designed to jump start RL's transition from research papers to production Horizon is the first open source end-to-end platform that uses applied reinforcement learning (RL) to optimize systems in large-scale production environments. The workflows and algorithms included in this release were built on open frameworks â PyTorch 1.0, Caffe2, and Spar
Hardware Accelerators for Machine Learning (CS 217) Stanford University, Winter 2023 This course provides in-depth coverage of the architectural techniques used to design accelerators for training and inference in machine learning systems. This course will cover classical ML algorithms such as linear regression and support vector machines as well as DNN models such as convolutional neural nets, an
å¤å¤é解æ å帰åæï¼ãã¦ã¯ãï¼ï¼å¤å¥åæï¼ä¸»æååæï¼å ååæ, SEM æ°éå I é¡ï¼æ°éå II é¡ï¼æ°éå III é¡ï¼æ°éå IV é¡ æ£æºç¸é¢åæï¼ã¯ã©ã¹ã¿ã¼åæï¼ä¸»åº§æ¨åæ ã¯ãã³ããã¯ã® $\alpha$ ä¿¡é ¼æ§ä¿æ° çåç解æ Cutler-Ederer æ³ã«ããçå½è¡¨ï¼Kaplan-Meier æ³ã«ããçå½è¡¨ å¤éãã¸ã¹ãã£ãã¯ã¢ãã«ï¼Cox ã®æ¯ä¾ãã¶ã¼ãã¢ãã«
2.4 å·®ã¨æ¯ã¨ãã¼ã»ã³ãã®ä½¿ãåã (1) å·®ã¨æ¯ã®éã è¬å¤ã®æä¸åå¾ã§è¡å§ã測å®ããæã®ããã«ã対å¿ã®ãã2æ¨æ¬ãã¼ã¿ã®è¦ç´ãããå ´åã¯åå¾ã®å·®ãè¨ç®ãã¦å¤åéã«ããããå·®ãåå¤ã§å²ã£ã¦100ãæããåå¤ã«å¯¾ããå¤åçã«ãããªã©ãã¦1æ¨æ¬ãã¼ã¿ã«éå ãã¦æ±ãã¾ãã å¤åéã«ããå¤åçã«ãããããã¨ç¡é ä½ã«è¨ç®ãã¦ãã¾ãããå®ã¯ããã«ãçµ±è¨å¦ã®è½ã¨ãç©´ãæ½ãã§ãã¾ãã å·®ãå·®ã®ãã¼ã»ã³ããè¨ç®ããã¨ãããã¨ãã©ããã£ãæå³ãæã£ã¦ããã®ããããã§ããä¸åº¦ãã£ããã¨èãã¦ã¿ã¾ãããã å·®ãè¨ç®ãã¦å¤åéã«å¤æããã®ã¯åã ã®ãã¼ã¿ã®å¤åéãæ¯è¼ããããå¤åéã®å¹³åå¤ãæ±ãã¦å ¨ä½ã¨ãã¦ã©ã®ç¨åº¦å¤åããããè¦ç´ãããããããã§ãã ãããããå¤åéãåå¤ã«ãã£ã¦å½±é¿ãåããã¨ããã¨ãä¸ä½ã©ããããã¨ã«ãªãã§ããããï¼ ä¾ãã°è¡å§ã¯åå¤ã®å¤§ããªäººã»ã©ããä½ä¸ããã¨ãã¾ãã ããããã¨åãããã«1
An analysis of more than 400 use cases across 19 industries and nine business functions highlights the broad use and significant economic potential of advanced AI techniques. Artificial intelligence (AI) stands out as a transformational technology of our digital ageâand its practical application throughout the economy is growing apace. For this briefing, Notes from the AI frontier: Insights from h
æ©æ¢°å¦ç¿ã®å½éå¦ä¼ NIPSâ17 ã«ä½µè¨ãã Kaggle ã§éå¬ãããã³ã³ãã¹ããNIPSâ17 Adversarial Learning Competitionãã« PFN ã®ã¡ã³ãã¼ã§åå ãã4 ä½å ¥è³ãæãããã¨ãã§ãã¾ããããã®çµæãNIPSâ17 ã«æå¾ ããçºè¡¨ãè¡ããææ³ã«ã¤ãã¦ã®è«æãå·çãå ¬éãã¾ãããã½ã¼ã¹ã³ã¼ããå ¬éãã¦ãã¾ããæ¬è¨äºã§ã¯ãå ·ä½çã«ã©ããã£ãå 容ã®ã³ã³ãã¹ãã ã£ããããæã ãã©ã®ãããªã¢ããã¼ãã§åãçµã¿ 4 ä½å ¥è³ãéæããã®ãã«ã¤ãã¦ç´¹ä»ãã¾ãã Adversarial Example ã¨ã¯ï¼ Adversarial example [1, 2, 3] ã¯æ·±å±¤å¦ç¿ãå®ç¨åãã¦ããä¸ã§ã®æã大ããªèª²é¡ã® 1 ã¤ã¨ãã¦èãããã¦ããé常ã«ããããªç 究åéã§ããç»åèªèãä¾ã«åãã¨ãå ç»åã«å¯¾ã人ãæ°ã¥ããªãç¨åº¦ã®å ããªå¤æ´ãå ããã ãã§ãCNN ã«ã
ã¯ããã« ãç°å¸¸æ¤ç¥ããããã¨èãã¦ãã人ã¯å¤ãã¨æãã¾ãããã¯ãå²ç¢ã§ããæ©æ¢°ã人éãä¸åãæ代ã¨ãªã£ãã®ã§ãã·ã¹ãã ã®æ éãçºè¦ãããã¯ã¬ã¸ããã«ã¼ãè©æ¬ºãè¦ã¤ãããã¨ããç°å¸¸æ¤ç¥ã·ã¹ãã ãããã¼ã¿ãµã¤ã¨ã³ã¹ã使ãã°äººé以ä¸ã«åªç§ãªãã®ãä½ããã®ã§ã¯ãªããï¼ã¨èããã®ãèªç¶ã§ãããã ä¸æ¹ã§ãå®éã«ç°å¸¸æ¤ç¥ã·ã¹ãã ã®éçºã«ä¹ãåºãã¦ã¿ããã®ã®ãæå¤ã¨ä¸æãå®æã¾ã§è¾¿ãã¤ããªãã£ããããã£ããä½ã£ãããã©ãçµå±èª¤æ¤ç¥ã ããã§ãèµå ¥ãããããã¨ããã±ã¼ã¹ãããã®ã§ã¯ãªããã¨æãã¾ãããã®è¨äºã§ã¯å®éã«ç°å¸¸æ¤ç¥ã·ã¹ãã ãã¼ãããéçºãã¦ã¿ãçµé¨ããããã¤ãã®ç¹ã«ã¤ãã¦æ¸ãã¦ã¿ããã¨æãã¾ãã ãã®è¨äºã«ã¯ã¢ã«ã´ãªãºã çãªãæè¡çãªç¥è¦ã¯å«ã¾ãã¦ãã¾ããããããå± é å±ã§ç°å¸¸æ¤ç¥ããã¿ã«åãã¨ãããããã®ã¸ãã§çãä¸ããããªãçãªè¨äºã¨ãã¦æ¸ãã¦ã¿ã¾ããã®ã§ããæéããã¨ãã«æ°è»½ã«èªãã§ããã ã
(Image by Pixabay) ææã§ããºã£ã¦ãããã®è¨äºã§ããã ããèªãã ç¬éã«ãããã¼ãããå®å ¨ã«æ´ã®æ±è¥¿ãåãããã¼ã¿åææ¥çã ã¨ã©ãã§ãè¦ããããæ¥çã¤ãã¿ããããã ãªã¼ãã¨ããæã湧ãã¦ãã¦ããã¿ä¸ãã¦ããæ¶ãæ¼ããããã¾ããã§ããï¼åï¼ãã¨ãã軽å£ã¯ãã¦ãããå®éã«ã»ã¼åãå 容ã®æç´ãUSã§ãã¼ã¿ãµã¤ã¨ã³ãã£ã¹ãã¨ãã¦åãã¦ããç¥äººãããç´ã«èãããã¨ãããã®ã§ãå人çã«ãããªã説å¾åã®ãã話ã ãªã¨æãã¾ããã ãã®è¨äºã®è¥å¹²å«ãªã¨ããã¯ããã¼ã¿ãµã¤ã¨ã³ãã£ã¹ããã¡ã¯ãã¤ã§ã転è·æ´»åããã¦ãããä½æ ãªãã©ãã®è·å ´ã«è¡ã£ã¦ã以ä¸ã®ã¤ãã¿ãããããã ãã¨ããæ¸ãæ¹ããã¦ããç¹ãããããã¼ã¿ãµã¤ã¨ã³ãã£ã¹ãå«ããã¼ã¿åæè·ãå ¨å¡å¸¸ã«è»¢è·æ´»åãã¦ãããã¨ããã¨ãããã«éãã ããã¨æãã¾ãããããããããã¤ãããã§ããã¸åå¼ãã¦ä¸ãããã¨è¨ããããé ·ããããå¾ãªãã®ãã¾ãäºå®ããª
ã¯ããã« Scutumã§ã¯2017å¹´ã®åæ¬ããã¢ãããªæ¤ç¥(ç°å¸¸æ¤ç¥)ã«ããé²å¾¡æ©è½ã®éçºãæ¬æ ¼çã«ã¹ã¿ã¼ããã1å¹´ã»ã©ããã¦å¾ã ã«å®ç¨æ§ãé«ãã¦ãã¾ãããããã§è¡ã£ã¦ããã®ã¯ãããããæ師ãªãå¦ç¿ã«ããç°å¸¸æ¤ç¥ãã§ãä¸æ ¸ã¨ãã¦ããã¢ã«ã´ãªãºã ã¯XBOSã¨ãããã®ã§ãã ãã°ããã®éã¯å®å ¨ã«ææ¢ãã§ã·ã¹ãã éçºãé²ãã¦ãã¦ãç°å¸¸æ¤åºã®ã¢ã«ã´ãªãºã ã®å®éçãªæ§è½ã«ã¤ãã¦ã¯ç§å¦çãªè£ä»ãã«ä¹ããç¶æ ã§ãããããªãã¨ãªãåãã¦ãã(ç°å¸¸ãè¦ã¤ãããã¨ãã§ãã¦ãã)ããã ãããããã§ããããã¨ããæãã®ç¶æ ã§ãããã¤ããçµæãè¦ã¦æ¹åãéããã¨ãããµã¤ã¯ã«ãç¹°ãè¿ãã¦ããå½¢ã§ãã 2018å¹´ã«ãªããããã¾ã§æ®ã©ç®ãéããã¨ãã§ãã¦ããªãã£ãç°å¸¸æ¤ç¥ã«é¢ããå¦è¡çãªæ å ±(è«æç)ãè¦ã¦ããã¨ãããããã¤ãé¢ç½ãçºè¦ãããã¾ãããããã§ä»åãå°ãèªåã§ãæãåããã¦èª¿æ»ãããã¤ã³ãã®ãã¡ã®1ã¤ã3ã¤ã®
ã¹ãã¢ã©ã人工ç¥è½ã·ã³ãã¸ã¦ã 2018 è¬æ¼è³æ https://stair.connpass.com/event/76647/
Metasploit Frameworkï¼ä»¥ä¸ãMetasploitï¼ã¨ã¯ããããã¬ã¼ã·ã§ã³ãã¹ããèå¼±æ§è¨ºæã§ä½¿ç¨ãããç£æ»ãã¼ã«ã®1ã¤ã§ãããPort scanningãExploitã®å®è¡ãããã³èå¼±æ§èª¿æ»ã®ããã®æ§ã ãªè£å©ãã¼ã«ãå«ã¾ããã³ãã³ãã©ã¤ã³ãã¼ã«ã§ãã ä»åãçè ã¯Metasploitã¨æ©æ¢°å¦ç¿ãé£æºããã対象ãã¹ãã«å¯¾ããæ¢ç´¢è¡çºããä¾µå ¥ã¾ã§ãèªåçã«å®è¡ããç¬èªã®æ¤è¨¼ãã¼ã«ãDeep Exploit (beta)ãï¼ä»¥ä¸ãDeep Exploitï¼ãä½æãã¾ãããæ¬ãã¼ã«ãå æ¥éå¬ãããSECCON YOROZUã«åºå±ããã¨ãã好è©ãå¾ã¾ããã®ã§ãæ¬ããã°ã§è¨è¨ææ³ãå®è£ æ¹æ³ããã³ãã¢ããè¦ããã¾ãã ç¾æç¹ã®Deep Exploitã¯betaçã§ããã以ä¸ã®è¡çºãå®è¡å¯è½ã§ãã Intelligence gathering 対象ãã¹ãã®æ å ±ãPort scanni
Deleted articles cannot be recovered. Draft of this article would be also deleted. Are you sure you want to delete this article? ã¯ããã«: çµ±è¨å¦ã®éè¦æ§ NTT ãã¼ã¿æ°çã·ã¹ãã ã§ãªãµã¼ãã£ã¼ããã¦ãã大槻 (é称ãããã¡ãã) ã§ãã ä»åã¯çµ±è¨æ¤å® 1 ç´ã«ã¤ãã¦è¨ãã¾ãã çµ±è¨æ¤å®ã¨ã¯æ¥æ¬çµ±è¨å¦ä¼ã«ããå ¬èªã®è³æ ¼ã§ãããçµ±è¨ã«é¢ããç¥èãæ´»ç¨åãè©ä¾¡ãããã®ã§ãã æ¥å¸¸çã«å¤§éã®ãã¼ã¿ã溢ãã¦ããæ¨ä»ããã¼ã¿åæãæ©æ¢°å¦ç¿ã«å¯¾ãããã¼ãºã¯æé«ã®é«ã¾ããè¦ãã¦ãã¾ããæè¿ã§ã¯ä½ãèããã¨ããã ãã¼ã¿ãå ¥åããã ãã§ãã¼ã¿åæãæ©æ¢°å¦ç¿ææ³ãå®è¡ãã¦ããããã¼ã«ãå¤æ°åºåãããã«ãªãã¾ããã ãã¼ã¿åæãæ©æ¢°å¦ç¿ãå®éã«éè¡ããã«ããã£ã¦ãçµ±è¨å¦ã¯å¼·åãªåº
Earlier this month, I had the exciting opportunity to moderate a discussion between Professors Yann LeCun and Christopher Manning, titled âWhat innate priors should we build into the architecture of deep learning systems?â The event was a special installment of AI Salon, a discussion series held within the Stanford AI Lab that often features expert guests. This discussion topic â about the structu
ã¡ã³ããã³ã¹
ãç¥ãã
é害
ãªãªã¼ã¹ãé害æ å ±ãªã©ã®ãµã¼ãã¹ã®ãç¥ãã
ææ°ã®äººæ°ã¨ã³ããªã¼ã®é ä¿¡
å¦çãå®è¡ä¸ã§ã
j次ã®ããã¯ãã¼ã¯
kåã®ããã¯ãã¼ã¯
lãã¨ã§èªã
eã³ã¡ã³ãä¸è¦§ãéã
oãã¼ã¸ãéã
{{#tags}}- {{label}}
{{/tags}}