BBPç³»å ¬å¼
ãã®ãã¼ã¸ã§ã¯ BBP ã®å ¬å¼ã¨å¼ã°ããå ¬å¼ãããã«é¡ããå ¬å¼ãç´¹ä»ããã BBP ã®å ¬å¼ã¯ 16 é²æ° (2 é²æ°) 表è¨ã§ã® $n$ æ¡æ°ç®ã $O(n)$ ã§æ±ããããæ¹å¼ã¨ãã¦ç¥ãããã
$\pi$ å ¨ä½ãè¨ç®ããã¨ãã観ç¹ã§è¦ãå ´åã åç´ãªå®è£ ã§èãã㨠$O(n^2)$ ã§æ±ãããã¨ãã§ãããã Binary Splitting æ³ã DRM æ³ãé©ç¨ããã° $O(n(\log n)^3)$ ã§è¨ç®ãããã¨ãã§ããã
å ¬å¼
BBPã®å ¬å¼
\[ \pi = \sum_{n=0}^{\infty} \frac{1}{16^n}\left(\frac{4}{8n+1} - \frac{2}{8n+4} - \frac{1}{8n+5} - \frac{1}{8n+6}\right) \]ããã1995å¹´9æ19æ¥[JB02]ã«çºè¦ããã "BBP ã®å ¬å¼" ã¨å¼ã°ããå ¬å¼ã§ããã çºè¦è 3 åï¼David Bailey, Peter Borwein, Simon Plouffeï¼ ã®é æåãåã£ã¦åä»ããããã[FB02] ãã®å¼ãæ£ããäºã®è¨¼æã¯é«æ ¡æ°å¦ç¨åº¦ã®ç¥èã§ååå¯è½ã§ããã å¥ãã¼ã¸ã«ãã®æµããè¨ããã
Bellard ã®å ¬å¼[FT10]
\[ \pi = \frac{1}{64} \sum_{n=0}^{\infty} \frac{(-1)^n}{1024^n} \left( -\frac{32}{4n+1} - \frac{1}{4n+3} + \frac{256}{10n+1} -\frac{64}{10n+3} - \frac{4}{10n+5} - \frac{4}{10n+7} + \frac{1}{10n+9} \right) \]ç¾å¨ç¥ããã¦ãã BBP 系統ã®å ¬å¼é¡ã®ä¸ã§ãæãå¹çããè¨ç®ãããã¨ãã§ããã
ãã®ä»ã®é¡ä¼¼å ¬å¼[FB02]
\[ \pi = \sum_{n=0}^{\infty} \frac{(-1)^n}{4^n} \left( \frac{2}{4n+1} + \frac{2}{4n+2} + \frac{1}{4n+3} \right) \quad \text{(by Adamchik and Wagon)} \]é¨åè¨ç®ã®è¨é²
BBP å
¬å¼ã®çºè¦ã«ããã16 é²æ°ï¼2 é²æ°ï¼
ã§ç¹å®ã®æ¡ãç®åºããã¨ããè¨ç®è¨é²ãçã¿åºãããã
以ä¸ã«ãã®è¨é²ã示ãã
ãªããæ¡æ°ã¯ 16 é²æ°ã§æ°ããå°æ°ç¹ä»¥ä¸ã®æ¡æ°ã§ããã
ãçµæãæ ã¯è©²å½æ¡ä»¥éã®æ°åã示ãã
ã¤ã¾ãè¨é²ã 100 æ¡ã ã¨ããã¨ã100 æ¡ç®ã101 æ¡ç®ãâ¦
ã表示ãã¦ããã
ï¼ãã ã 1997 å¹´ã® Bellard ã®è¨é²ã«ã¤ãã¦ã¯æåã®
'1
' ã®é¨åã ã 2 é²æ°ã§ããã
ä¸ä½ 3bit åã¯ä¸æã§ãã£ããã
å¾ã®è¨ç®ã§ 16 é²æ°ã¯ 7 ã¨ãããã¨ãåãã£ããï¼
åèè³æ㯠[JB02] [FW01] [FW02] [FW03] [FW05] [JW08]
å¹´ | æ¡ä½ç½® | çµæ | éæè | å ¬å¼ | åè |
---|---|---|---|---|---|
1995/9 | 10,000,000,000 | 9 21C73C683 | Bailey, P. Borwein, Plouffe | BBP ã®å ¬å¼ | |
1996/7/6 | 50,000,000,000 | C 1A10A49B3E 2B82A4404F 9193AD4EB | Bellard | Bellard ã®å ¬å¼ | |
1996/10/7 | 100,000,000,000 | 9 C381872D27 596F81D0E4 8B95A6C46 | Bellard | Bellard ã®å ¬å¼ | |
1997/9/22 | 250,000,000,000 | 1 0FEE563B92 F0D22962B6 2DFD243160 8547A82 | Bellard | Bellard ã®å ¬å¼ | |
1998/8/30 | 1,250,000,000,000 | 0 7E45733CC7 90B5B5979 | Percival | Bellard ã®å ¬å¼ | |
1999/2/9 | 10,000,000,000,000 | A 0F9FF371D1 7593E0 | Percival | Bellard ã®å ¬å¼ | |
2000/9/11 | 250,000,000,000,000 | E 6216B069CB 6C1D3 | Percival | Bellard ã®å ¬å¼ | |
2010/9 | 500,000,000,000,000 | 0 E6C1294AED 40403F56D2 D764026265 BCA98511D0 | æ½åå | ||
2013/3/14 | 2,000,000,000,000,000 | 6 53728F1 | Ed Karrels | Bellard ã®å ¬å¼ | |
2013/5/20 | 4,000,000,000,000,000 | 5 CC37DEC | Ed Karrels | Bellard ã®å ¬å¼ | |
2016/12/18 | 100,000,000,000,000,000 | A 937EB59439 E485E | é«æ©å¤§ä» | Bellard ã®å ¬å¼ |
è¨ç®æ¹å¼
ãã®å ¬å¼ãç¨ã㦠$O(n)$ 㧠$n$ ãããç®ãæ±ããæ¹æ³ãç´¹ä»ããã è¨ç®æ¹å¼ã®æ¹å¼ãè¨ç®éã®è¨ç®ã§ã¯å ¬å¼ã以ä¸ã®æ§ã«åé¢ãã¦èããã
\[ \pi = 4S(8,1) - 2S(8,4) - S(8,5) - S(8,6) \] \[ \text{ãã ã } S(a,b)=\sum_{n=0}^{\infty}\frac{1}{16^n}\frac{1}{an+b} \]è¨ç®é
ã¨ããããç¹°ãä¸ãããèæ ®ããã«èããã¨ã16 é²æ°ã§ $d$ æ¡ç®ã¾ã§æ±ããã®ã«å¿ è¦ãªå $S$ ã®é æ° $n$ ã¯
\[ \begin{eqnarray} c\Delta S(a,b) \lt 16^{-d} && \\ n+ \log(an+b) \gt d + \log c && \\ n \gt d + \log c && (\log(an+b)=0 \text{ã¨è¦ãªã}) \end{eqnarray} \]ã¨ãããã¨ã«ãªããæ¦æ°ã§ããã° 16 é²æ°ã§æ°ããæ¡æ°ã¨åæ°ç¨åº¦ã®é æ°ãè¨ç®ããã°è¯ãã
è¨ç®æ¹å¼
$S$ ã®åé $\dfrac{1}{16^n}\dfrac{1}{an+b}$ ã 16 é²æ°ã§è¡¨è¨ããæã $d$ æ¡ç®ä»¥éã®æ°åå㯠$16^{d-n-1}$ ã $an+b$ ã§å²ã£ãåã®å°æ°ç¹ä»¥ä¸ã®æ°ååã«ãªãã ããã¦ãã®å¤ã¯ã$16^{d-n-1}$ ã $an+b$ ã§å²ã£ãä½ã $r$ã ã $an+b$ ã§å²ã£ãåã®å°æ°ç¹ä»¥ä¸ã«ãªãã
\[ 16^{d-1}\Delta S \bmod 1 = \frac{16^{d-n-1}}{an+b} \bmod 1 = \frac{(an+b)q+r}{an+b} \bmod 1 = \frac{r}{an+b} \bmod 1 \quad (0 \leq r \lt an+b) \]ãã®ãããã¨ãããã $r$ ãæ±ãã$an+b$ ã§å²ãã ç¹ã« $d-n-1 \ge 0$ ã§ã¯
\[ AB \bmod C = (A \bmod C)(B \bmod C) \bmod C \]ã¨ãããã¨ãå帰çã«å©ç¨ããã $a^n$ ã $b$ ã§å²ã£ãä½ããæ±ããããã«ãã¾ã㯠$2^m\leq n \lt 2^{m+1}$ ãæºãã $m$ ã¾ã§ã2 ã®ããä¹ãä¹ã $b$ ã§å²ã£ãä½ããæ±ããã
\[ \begin{eqnarray} a^2 \bmod b &=& (a \bmod b)^2 \bmod b\\ a^4 \bmod b &=& (a^2 \bmod b)^2 \bmod b\\ a^8 \bmod b &=& (a^4 \bmod b)^2 \bmod b\\ & \vdots &\\ a^{2^m} \bmod b &=& (a^{2^{m-1}} \bmod b)^2 \bmod b\\ \end{eqnarray} \]次ã«ææ°ã足ãåããã㨠$n$ ã«ãªã $2^n$ ã®çµã¿åããã®ãã®ãæãåããã¦ä½ããæ±ããã ããã¯å®è³ªçã« $n$ ã® 2 é²æ°è¡¨ç¤ºã§ 1 ã«ãªã£ã¦ããç®æã®å¤ãæãåããããã¨ã«ãªãã ä¾ãã°
\[ \begin{eqnarray} 9 &=& 1001_{\text{[2é²æ°]}} & \rightarrow & a^9 &=& a^8 a\\ 63 &=& 111111_{\text{[2é²æ°]}} & \rightarrow & a^{63} &=& a^{32} a^{16} a^8 a^4 a^2 a\\ 137 &=& 10001001_{\text{[2é²æ°]}} & \rightarrow & a^{137} &=& a^{128} a^8 a\\ 172 &=& 10101100_{\text{[2é²æ°]}} & \rightarrow & a^{172} &=& a^{128} a^{32} a^8 a^4\\ 183 &=& 10110111_{\text{[2é²æ°]}} & \rightarrow & a^{183} &=& a^{128} a^{32} a^{16} a^4 a^2 a \end{eqnarray} \]ã¨ããããã«è¨ç®ããã
$d-n-1 \lt 0$ ã§ã¯ $\Delta S\lt 1$ ãªã®ã§æ®éã«å²ã£ã¦çµæãæ±ããã ã¤ã¾ã
\[ 16^{d-1}S(a,b) = \sum_{n=0}^{\infty}\frac{16^{d-n-1}}{an+b} = \sum_{n=0}^{N-1} \frac{16^{d-n-1}}{an+b} + \sum_{n=N}^{\infty}\frac{16^{d-n-1}}{an+b} \]ã¨åãã1 ã¤ç®ã® $\sum$ ãä¸è¨ã®æ¹æ³ã§ã 2 ã¤ç®ã® $\sum$ ã®ãã¡æ°é ãæ®éã«è¨ç®ãããã¨ã§ $16^dS(a,b)$ ã®å°æ°ç¹ä»¥ä¸ã®å¤ãæ±ããã ãã㧠$N$ 㯠$16^{d-N^1} \lt aN+b$ ãæºããæå°ã®èªç¶æ°ã§ããã å¾å㯠1 é é²ããã¨ã«åã®é ã® 1/16 以ä¸ã«ãªãã®ã§ 20 é ãè¨ç®ããã°ç¹°ãä¸ããèæ ®ãã¦ã 16 é²æ°ã§ 10 æ°æ¡ã¯å¤ãããªãå½¢ã«ãªãã
ä»»æåºåº
1996 å¹´ãSimon Plouffe ã $O(n^3 (\log n)^3)$ ã®è¨ç®éãå¿ è¦ã«ãªããã®ã®ãä»»æã®åºåºã§ $\pi$ ã® $n$ æ¡ç®ã ããæ±ããææ³ãéçºãã ç¿ 1997 å¹´ã« Bellard ãå¿ è¦ãªè¨ç®éã $O(n^2)$ ã¾ã§æ¸å°ãããã [FT14] 2003 å¹´ãããã« X. Gourdon ãå¥ã®è¨ç®åçãç¨ã㦠$O(n^2(\log^2 n)^2 \log^3n / \log n)$ãããã㯠$O(m)$ ã®ã¡ã¢ãªã使ã£ã¦ $O(n^2\log^3n \log^2n / (m\log^2(n/m)))$ ã®è¨ç®éã¨ãªãæ¹æ³ãéçºããã[FT14]
arctan å ¬å¼ããã®å¤æ
BBP ã®å ¬å¼ã®ä¸é¨ã«ã¤ãã¦ã¯ $\arctan$ ã®å ¬å¼ããå¤æãã¦è¦ã¤ãããã¨ãã§ããã ãã®ããã« $\log (1+x)$ ã® Maclaurin å±éãå©ç¨ããã
\[ \log (1+x) = \sum_{n=1}^{\infty}\frac{-(-x)^n}{n} = x - \frac{x^2}{2} + \frac{x^3}{3} + \cdots \]ä¸æ¹ã§ arctan ã®å¼ã以ä¸ã®ããã«å¤å½¢ããã
\[ \begin{eqnarray} \arctan \dfrac{1}{x} &=& {\rm Im} (\log (x + i) )\\ &=& {\rm Im} \left(\log \left(1 + \dfrac{i}{x}\right) \right)\\ &=& {\rm Im} \left(\sum_{n=1}^{\infty} -\dfrac{(-i)^n}{nx^n} \right)\\ &=& \sum_{n=0}^{\infty} \dfrac{1}{x^{4n}}\left(\dfrac{1}{(4n+1)x} - \dfrac{1}{(4n+3)x^3} \right)\\ &=& \sum_{n=0}^{\infty} \dfrac{(-1)^n}{(2n+1)x^{2n+1}} \end{eqnarray} \] \[ \begin{eqnarray} \arctan \dfrac{1}{x} &=& {\rm Im} (\log (x \pm 1 + \mp 1 + i) )\\ &=& {\rm Im} \left(\log \left(1 + \dfrac{\mp 1 + i}{x\pm 1}\right) \right)\\ &=& {\rm Im} \left(\sum_{n=1}^{\infty} -\dfrac{(\pm 1 - i)^n}{n(x\pm 1)^n} \right)\\ &=& \sum_{n=0}^{\infty} \dfrac{16^n}{(x\pm1)^{8n}}\left( \dfrac{1}{(8n+1)(x\pm 1)}\pm\dfrac{2}{(8n+2)(x\pm 1)^2}+ \dfrac{2}{(8n+3)(x\pm 1)^3}\right.\\ &&\left.-\dfrac{4}{(8n+5)(x\pm 1)^5}\mp \dfrac{8}{(8n+6)(x\pm 1)^6}-\dfrac{8}{(8n+7)(x\pm 1)^7}\right)\\ &=& \sum_{n=0}^{\infty} \dfrac{(-1)^n 4^n}{(x\pm1)^{4n}}\left( \dfrac{1}{(4n+1)(x\pm 1)}\pm\dfrac{2}{(4n+2)(x\pm 1)^2}+ \dfrac{2}{(4n+3)(x\pm 1)^3}\right)\\ \end{eqnarray} \]æå¾ã®å¤å½¢ã¯ $(\pm1-i)^2=\mp2i$ ã¨ããã®ãå©ç¨ãã¦ãããã¾ããããã¨ç´åãã¦ããªãã
ãã¦ãã®2ã¤ã®å¼å¤å½¢ãå©ç¨ãããã¨ã§ã$x=2^k$ ã¾ã㯠$x=2^k\pm1$ ã®ãã¿ã¼ã³ã®ã¿ãå«ã¾ãã $\arctan$ å ¬å¼ã BBP å ¬å¼ã«å¤æãããã¨ãã§ããã ãããã㦠$2^k=x, x\pm1$ ã¨ç½®ãç´ãã¨
\[ \arctan \dfrac{1}{2^k} = \sum_{n=0}^{\infty} \dfrac{(-1)^n}{2^{2kn}}\dfrac{2^{-k}}{2n+1} \] \[ \arctan \dfrac{1}{2^k\pm1} = \sum_{n=0}^{\infty} \dfrac{(-1)^n}{2^{(4k-2)n}}\left( \dfrac{2^{-k}}{4n+1} \mp \dfrac{2^{-2k}}{2n+1} + \dfrac{2^{1-3k}}{4n+3}\right) \]ã¨ããå½¢ã«ãªããããã§ä»¥ä¸ã®ããã« $x=2^k, 2^k\pm1$ ã«å¯¾ã㦠$1+x^2$ ã®ç´ å æ°å解 ãè¡ã $\arctan$ ã®ç´ æ°æ¢ç´¢æ³ãé©ç¨ãããã¨ã§å¹ççã« BBP ç³»å ¬å¼ãä½ãåºããã¨ãã§ããã
\[ \begin{eqnarray} 1+2^2 &=& 5 &=& 5\\ 1+3^2 &=& 10 &=& 2\cdot5\\ 1+4^2 &=& 17 &=& 17\\ 1+5^2 &=& 26 &=& 2\cdot13\\ 1+7^2 &=& 50 &=& 2\cdot5^2\\ 1+8^2 &=& 65 &=& 5\cdot13\\ 1+9^2 &=& 82 &=& 2\cdot41\\ &\vdots& \end{eqnarray} \]ãã¨ãã°
\[ \begin{eqnarray} \pi &=& 4\arctan \dfrac{1}{2^1} + 4 \arctan \dfrac{1}{2^1+1}\\ &=& \sum_{n=0}^{\infty} \dfrac{(-1)^n}{4^n}\dfrac{2}{2n+1} +\sum_{n=0}^{\infty} \dfrac{(-1)^n}{4^n}\left( \dfrac{2}{4n+1}-\dfrac{1}{2n+1}+\dfrac{1}{4n+3}\right)\\ &=& \sum_{n=0}^{\infty} \dfrac{(-1)^n}{4^n}\left( \dfrac{2}{4n+1}+\dfrac{1}{2n+1}+\dfrac{1}{4n+3}\right)\\ &=& \dfrac{1}{4}\sum_{n=0}^{\infty} \dfrac{1}{16^n}\left( \dfrac{8}{8n+1}+\dfrac{4}{4n+1}+\dfrac{4}{8n+3} -\dfrac{2}{8n+5}-\dfrac{1}{4n+3}-\dfrac{1}{8n+7} \right)\\ \end{eqnarray} \] \[ \begin{eqnarray} \pi &=& 8\arctan \dfrac{1}{2^1} - 4 \arctan \dfrac{1}{2^3-1}\\ &=& \sum_{n=0}^{\infty} \dfrac{(-1)^n}{2^{2n}}\dfrac{2^2}{2n+1} - \sum_{n=0}^{\infty} \dfrac{(-1)^n}{2^{10n}}\left( \dfrac{2^{-1}}{4n+1}+\dfrac{2^{-4}}{2n+1}+\dfrac{2^{-6}}{4n+3}\right)\\ &=& \sum_{n=0}^{\infty} \dfrac{(-1)^n}{2^{10n}}\left( \dfrac{2^2}{10n+1} - \dfrac{1}{10n+3} + \dfrac{2^{-2}}{10n+5} -\dfrac{2^{-4}}{10n+7} + \dfrac{2^{-6}}{10n+9} \right)\\ && - \sum_{n=0}^{\infty} \dfrac{(-1)^n}{2^{10n}}\left( \dfrac{2^{-1}}{4n+1}+\dfrac{2^{-4}}{2n+1}+\dfrac{2^{-6}}{4n+3}\right)\\ &=& \dfrac{1}{64}\sum_{n=0}^{\infty} \dfrac{(-1)^n}{1024^n}\left( -\dfrac{32}{4n+1} - \dfrac{1}{4n+3} + \dfrac{256}{10n+1} - \dfrac{64}{10n+3} -\dfrac{4}{10n+5} - \dfrac{4}{10n+7} + \dfrac{1}{10n+9} \right)\\ \end{eqnarray} \]ã¨ãã形㧠Bellard ã®å ¬å¼ãå°åºã§ããã æå¾ã®è¡ã§ã¯ $2n+1$ 㨠$10n+5$ ã®éåããã¦çºãã¦ããã