arctanç³»å ¬å¼
$\arctan$ ã¯ä¸è§é¢æ° $\tan$ ã®éé¢æ°ã§ããã æçæ°ãã $\pi$ ãæ±ããè¨ç®ã®ä»£è¡¨ä¾ã§ããã 詳ããã¯arctan ã¨ã¯ï¼ ã®ãã¼ã¸ãè¦ã¦ã»ããã
代表ä¾
[JB07][JW04][JW05] ãªã©ã§ããããç´¹ä»ããã¦ããã®ã§ã ããã§ã¯æåãªã¢ããè¨ç®è¨é²ã«ä½¿ããããã¨ãããã¢ãã示ãã ãªã Machin ã®å ¬å¼ã®ããã« $\arctan$ ã®å¼æ°ãæ´æ°ã®éæ°ã§ãã é æ°ã 2 ã¤ãããªãå ¬å¼ã¯ 4 種é¡ãããªããã¨ã証æããã¦ããã
- Machin ã®å ¬å¼
- $\dfrac{\pi}{4} = 4 \arctan \dfrac{1}{5} - \arctan \dfrac{1}{239}$
- Klingenstierna ã®å ¬å¼
- $\dfrac{\pi}{4} = 8 \arctan \dfrac{1}{10} - \arctan \dfrac{1}{239} - 4 \arctan \dfrac{1}{515}$
- Euler ã®å ¬å¼ (â»)
- $\dfrac{\pi}{4} = 5 \arctan \dfrac{1}{7} + 2 \arctan \dfrac{3}{79}$
- Euler ã®å ¬å¼(2)
- $\dfrac{\pi}{4} = 4 \arctan \dfrac{1}{5} - \arctan \dfrac{1}{70} + \arctan \dfrac{1}{99}$
- Gauß ã®å ¬å¼
- $\dfrac{\pi}{4} = 12 \arctan \dfrac{1}{18} + 8 \arctan \dfrac{1}{57} - 5 \arctan\dfrac{1}{239}$
- Störmer ã®å ¬å¼
- $\dfrac{\pi}{4} = 6 \arctan \dfrac{1}{8} + 2 \arctan \dfrac{1}{57} + \arctan \dfrac{1}{239}$
- Störmer ã®å ¬å¼(2)
- $\dfrac{\pi}{4} = 44 \arctan \dfrac{1}{57} + 7 \arctan \dfrac{1}{239} - 12 \arctan \dfrac{1}{682} + 24 \arctan \dfrac{1}{12943}$
- é«éåä¹ éã®å ¬å¼
- $\dfrac{\pi}{4} = 12 \arctan \dfrac{1}{49} + 32 \arctan \dfrac{1}{57} - 5 \arctan\dfrac{1}{239} + 12 \arctan \dfrac{1}{110443}$
ä½ãæ¹
é£éæ¢ç´¢æ³ [JB07][JW05][JM05]
$\arctan$ 㯠$\tan$ ã®éé¢æ°ãªã®ã§
\[ \frac{\pi}{4} = \arctan 1 \]ãæãç«ã¤ãã¾ã $\tan$ ã®å æ³å®çãã $ab=n^2+1$ ãæºããæ´æ° $a$ã$b$ ãç¨ããã¨
\[ \arctan \frac{1}{n} = \arctan \frac{1}{n+a} + \arctan \frac{1}{n+b} \]ã¨ãã形㧠1 ã¤ã® $\arctan$ ã 2 ã¤ã«åãããã¨ãã§ãããã ãããç¹°ãè¿ãé©ç¨ãããã¨ã§å¤ãã® $\arctan$ ç³»å ¬å¼ãä½ããã¨ãã§ããã ãã®ã¨ãã$n+a$ ã $n+b$ ãè² ã«ãªã $a$ã$b$ ãé¸ã¶ã¨ $\arctan$ ã®å¼æ°ãæ£ã«ãããã $\arctan$ ã®ä¿æ°ãè² ã«ãããã¨ãã§ããã
\[ \begin{eqnarray} \arctan 1 &=& \arctan(1/2) + \arctan(1/3)\\ \arctan(1/2) &=& \arctan(1/3) + \arctan(1/7)\\ \arctan(1/3) &=& \arctan(1/4) + \arctan(1/13) &=& \arctan(1/5) + \arctan(1/8)\\ \arctan(1/7) &=& \arctan(1/8) + \arctan(1/57) &=& \arctan(1/12) + \arctan(1/17)\\ \arctan(1/57) &=& \arctan(1/70) + \arctan(1/307) &=& \arctan(1/32) - \arctan(1/73)\\ \arctan(1/73) &=& \arctan(1/47) - \arctan(1/132) \end{eqnarray} \]ç´ æ°æ¢ç´¢æ³ (Störmer ã®æ¹æ³[JM05][JT05])
ãã¡ãã¯ç´ å æ°å解ãå©ç¨ãã¦ãè¤æ°ã®å ¬å¼ãçºãã¦æ±ããäºãã§ããææ³ã§ããã èæ¯ã¨ãªã£ã¦ããæ°å¦ãè¨ç®åçãªã©ã«ã¤ãã¦ã¯ç¹ã«è§£èª¬ããªãã
1. $m^2+1$ ã®ç´ å æ°å解表ãä½ã
ãã©ã¡ã¼ã¿ã¨ãã¦é©å½ã«æ±ºãã $M$ã$P$ ã«å¯¾ã㦠èªç¶æ° $m\lt M$ ã¨ç´ æ° $p\lt P$ ã®ç¯å²å 㧠$m^2+1$ ãç´ å æ°å解ããã ãã®ã¨ã
\[ m^2 + 1 = 2^{\nu} p_1^{e_1} p_2^{e_2} \cdots p_s^{e_s} \]ã«ãã㦠$\nu$ 㯠0 ã¾ã㯠1 ã§ããã $p_j \bmod 4 \equiv 1$ ãæãç«ã¤ã
ãã®ç´ å æ°å解ã«ããã¦é©åº¦ã«åºç¯å²ã«æ¸¡ã£ãå解ããã¦ããã°ã åãå解表ã以å¾ã®æé ã§ç¹°ãè¿ãå©ç¨ãããã¨ãã§ãã ä½åº¦ãå æ°å解ããªãã¦ããã
2. 使ã $p$ã$m$ ã®çµã¿åããã決ãã
ãã® $n$ é ã® $\arctan$ ãå«ã¾ããå ¬å¼ãä½ãã¨ãããã 1. ã®å解ã«ç¨ããç´ æ°ã®ä¸ãã $n-1$ å ã® $p$ ãé¸ã³åºãã ãã® $p$ (㨠2) ã ã㧠$m^2+1$ ãå解ã§ãã¦ãã $m$ ã $n$ åæãåºãã
å ·ä½ä¾ã¨ã㦠$n=3$ ã¨ã㦠$\{p\}=\{5, 13\}$ã $\{m\} = \{18, 57, 239\}$ ãé¸ã³åºãã ã¡ãªã¿ã«ããããã® $m^2+1$ ã®å解ã¯
\[ \begin{eqnarray} 18^2+1 &=& 325 &=& 5^2 \cdot 13\\ 57^2+1 &=& 3250 &=& 2 \cdot 5^3 \cdot 13\\ 239^2+1 &=& 57122 &=& 2 \cdot 13^4 \end{eqnarray} \]ã¨ãªã£ã¦ããã
3. ææ°ã®è¡åãä½ã
2. ã§æãåºãã $\{m\}$ ã«ã¤ã㦠å $m^2+1$ ã®å解çµæã§ããææ°ã並ã¹ã $n \times (n-1)$ è¡å $C$ ãä½ãã åè¡ã«ã¯ 1 ã¤ã® $m$ ã«ã¤ãã¦ã®å解çµæãã ååã«ã¯ 1 ã¤ã® $p$ ã«ã¤ãã¦ã®ææ°ã対å¿ããå½¢ã«ãªãã ãã ãã$m \bmod p \gt p/2$ ãªã符å·ãè² ã«ããã
ä¸è¨ã®ä¾ã§ã¯ $(m,p)=(18,5), (239,5)$ 㧠$m \bmod p \gt p/2$ ã¨ãªããã$(239,5)$ ã®ææ°ã¯ 0 ãªã®ã§ $(18,5)$ ã®ææ°ã ã符å·ãè² ã«ãã¦
\[ C=\begin{pmatrix} -2 & 1 \\ 3 & 1 \\ 0 & 4 \end{pmatrix} \]ã¨ãªãã
4. å ¬å¼ã®ä¿æ°ã決ãã
è¡åã® $i$ è¡ç®ã«å¯¾å¿ãã $m=m_i$ ã使ã£ã $\arctan\dfrac{1}{m_i}$ ã®ä¿æ° $c_i$ ã¯ã è¡å $C$ ãã $i$ è¡ç®ãåé¤ããè¡å $C_i$ ã®è¡åå¼ (ãã ã $i$ ãå¶æ°ã ã¨ç¬¦å·å転) ã«ãªãã å ã®è¨ç®ä¾ã§ããã°
\[ c_1 = \det(C_1) = \begin{vmatrix} 3 & 1 \\ 0 & 4 \end{vmatrix} = 12 \] \[ c_2 = -\det(C_2) = -\begin{vmatrix} -2 & 1 \\ 0 & 4 \end{vmatrix} = 8 \] \[ c_3= \det(C_3) = \begin{vmatrix} -2 & 1 \\ 3 & 1 \end{vmatrix} = -5 \]ãã
\[ 12\arctan\dfrac{1}{m_1} + 8\arctan\dfrac{1}{m_2} - 5\arctan\dfrac{1}{m_3} \]ã¨ããåºæ¬å½¢ãã§ããã
5. $k$ ã決ãã
ããã¾ã§ã®æé ã§æ±ºã¾ã£ãå¼ã®å¤ ${\displaystyle \sum_{i=1}^{n} c_i\arctan\dfrac{1}{m_i}}$ 㯠$\dfrac{\pi}{4}$ ã®æ´æ°åã«ãªã£ã¦ããã ããã§ãé©å½ãªç²¾åº¦ (ä¾ãã°å精度浮åå°æ°) ã§è¨ç®ã㦠ãã®åæ° $k$ ãæ±ããã å ã»ã©ã®è¨ç®ä¾ã§ã¯
\[ 12\arctan\dfrac{1}{18} + 8\arctan\dfrac{1}{57} - 5\arctan\dfrac{1}{239} = k\dfrac{\pi}{4} \]ã¨ããã¨ã左辺ã®å¤ã 0.7853981633974$\cdots$ ãªã®ã§ $k=1$ ã¨ãªãã Gauß ã®å ¬å¼
\[ \dfrac{\pi}{4} = 12\arctan\dfrac{1}{18} + 8\arctan\dfrac{1}{57} - 5\arctan\dfrac{1}{239} \]ãã§ãããã¨ããããã
è¨ç®æ¹æ³
$\arctan x$ ã®å¤ã¯ Taylor å±é(Maclaurin å±é) ãå©ç¨ãã¦æ±ãããã¨ãã§ããã å ·ä½çãªå¼å±éã¯
\[ \arctan x = \sum_{k=0}^{\infty} \frac{(-1)^k}{2k+1} x^{2k+1} = x - \frac{1}{3} x^3 + \frac{1}{5} x^5 - \frac{1}{7} x^7 + \cdots \]ã¨ãªãã$x$ ãæ´æ°ã®éæ°ã«ã¨ã£ã
\[ \arctan \frac{1}{n} = \sum_{k=0}^{\infty} \frac{(-1)^k}{2k+1}\frac{1}{n^{2k+1}} = \frac{1}{n} - \frac{1}{3}\frac{1}{n^3} + \frac{1}{5} \frac{1}{n^5} - \frac{1}{7} \frac{1}{n^7} + \cdots \]ã®å½¢ã§ããã°è¨ç®ã容æã« (ãã㦠$n$ ã大ãããã°åæãéã) ãªãããã大åã® $\arctan$ ç³»å ¬å¼ã¯
\[ \frac{\pi}{4} = \sum_{k=0}^n a_k \arctan \frac{1}{b_k} \]ã¨ããå½¢ã«ãªã£ã¦ããã (ãã ã Binary Splitting ã DRM ã使ãå ´åã æ´æ°ã®éæ°ã§ããã¡ãªããã¯ç¹ã«ç¡ãã) ãªããEuler ã®è¨ç®ã§ã¯å¥ã®å½¢ã®å±éãæ±ãè¨ç®ããããã ãã®æ¹æ³ã¯å¥ã«æ¸ãã¦ããã
ã³ã³ãã¥ã¼ã¿ãç¨ãã¦è¨ç®ããå®çªã®æ¹æ³ã¨ãã¦ã$x$ → $x^3$ → $x^5$ →… ãè¨ç®ãã¦ããã ãã®ããããã®æ®µé㧠$x^3$ → $x^3/3$ã$x^5$ → $x^5/5$ ãæ±ãã å ç®ã»æ¸ç®ã交äºã«ç¹°ãè¿ããã¨ã§æ±ããæ¹æ³ãããã ä¸ã«æ¬ä¼¼ã³ã¼ãã§ãã£ã¦ãã®å ·ä½çãªæé ã示ãã ãã®è¨ç®æé ã§ã¯ $k$ 㨠$n$ 以å¤ã®å¤æ°ã«é¢ããè¨ç®ãå¤åé·åºå®å°æ°ç¹æ°ã§è¡ãå¿ è¦ãããã
- å¤åé·ã®åºå®å°æ°ç¹æ° $A = 0$, $B = x$, $C$ ãç¨æããã
- è¨ç®ãããæ¡æ°ã¨ $x$ ããè¨ç®é æ° $n$ ãæ±ããã
- $k=0, 1, \cdots, n-1$ ã§ä»¥ä¸ãç¹°ãè¿ãã
- $B = B / x^2$
- $C = B / (2k + 1)$
- ãã $k$ ãå¶æ°ãªã
- $A = A - C$
- $k$ ãå¥æ°ãªã
- $A = A + C$
- $A$ ãè¿ã
è¨ç®é æ°
ä¸è¨ã®ã¢ã«ã´ãªãºã ã§ææ§ã«ãã¦ããè¨ç®é æ° $n$ ã®æ¹æ³ã«ã¤ãã¦èãããã æ¬å½ãªã $C$ ã«å ¥ãå¤ã表ç¾ããç¯å²ã§ 0 ã«ãªã£ãããã以éã¯è¨ç®ããå¿ è¦ã¯ãªãã ããæ¯å 0 ãã§ãã¯ãããã®ã¯è¨ç®ã³ã¹ããé«ãã®ã§è¨ç®ãè¡ãåã«å¿ è¦ãªè¨ç®é æ°ãè¦ç©ããå¿ è¦ãããã
è¨ç®ã®ä¾å¤ãç¡ããåææ¡ä»¶ã¨ãã¦ãå¿ è¦ãªé æ° $n$ 㯠4 以ä¸ã$x$ 㯠2 以ä¸ã®æ´æ°ã®éæ°ã§ããã¨ããã ãã®åææ¡ä»¶èªä½ã¯ $\pi$ è¨ç®ã«ããã¦ã¯ãããå¶éã¨ã¯ãªããªãã æ±ããæ¡æ°ãå°æ°ç¹ä»¥ä¸ $d$ æ¡ã¨ããã¨ãã$n$ ã®æºããæ¡ä»¶ã¯
\[ \frac{1}{(2n+1)x^{2n+1}} \lt 10^{-d} \]ã¨ãªãã対æ°ãã¨ã£ã¦è¨ç®ããã¨
\[ d \lt \log (2n+1) + (2n+1) \log x \tag{1} \]ãã㧠$O(\log n) < O(n)$ ãã $\log(2n+1)$ ã®é ãç¡è¦ãã¦èããã¨
\[ \frac{1}{2} \left(\frac{d}{\log x} - 1\right) \lt n \]Euler ã®å±é
Euler 㯠$\arctan x$ ã以ä¸ã®ããã«å±éãã Euler ã®å ¬å¼ã使ã£ã¦ 1 æéç¨åº¦ã§ 20 æ¡ãæ±ããã[JB02][FB02]
\[ \begin{eqnarray} \arctan x &=& \dfrac{x}{1+x^2} \left(1+ \sum_{k=1}^{\infty} \prod_{j=1}^{k} \dfrac{2j}{2j+1} \left( \frac{x^2}{1+x^2}\right)^k \right)\\ &=& \frac{y}{x} \left(1+\dfrac{2}{3}y + \dfrac{2\cdot4}{3\cdot5} y^2 + \dfrac{2\cdot4\cdot6}{3\cdot5\cdot7}y^3 + \cdots \right) & \quad ({\rm ãã ã\ }y = \dfrac{x^2}{1+x^2})\\ &=& \dfrac{y}{x} \left(1 + \dfrac{2}{3}y \left(1 + \dfrac{4}{5}y \left(1 + \dfrac{6}{7}y \left(1 + \cdots \right) \right) \right) \cdots \right) \end{eqnarray} \]ãã®å±éã«ããã¦ãx ã« 1/7 ã 3/79 ãä»£å ¥ããã¨
\[ x = \frac{1}{7} \Rightarrow y = \frac{2}{100} \] \[ x = \frac{3}{79} \Rightarrow y = \frac{144}{100000} \]ã¨ãªãã®ã§ 10 é²æ°ã§ã®è¨ç®ãè¡ããããã ãªãããã®å±éãç¨ããå ´åã« $d$ æ¡ã¾ã§æ±ããã®ã«å¿ è¦ãªè¨ç®é æ° $n$ ã¯
\[ \begin{eqnarray} \dfrac{1}{x} \prod_{j=1}^{n} \dfrac{2j}{2j+1} \left(\dfrac{x^2}{1+x^2}\right)^{n+1} \lt 10^{-d}\\ \log x + \sum_{j=1}^{n} \log \left(1+ \dfrac{1}{2j}\right) + (n+1) \log \left(1+\dfrac{1}{x^2}\right) \gt d \end{eqnarray} \]ããã§ Σ ã®é ãç¡è¦ãã¦è¨ç®ããã¨
\[ \frac{d-\log x}{\log \left(1+\frac{1}{x^2}\right)} - 1 \lt n \]ã¨ãªããΣ ã®é ãããç¨åº¦è¨ç®ãã¦ããã°ããæ£ç¢ºãªé æ°ãæ±ããããã