DNA結合モチーフ
英訳・(英)同義/類義語:DNA-binding motifs, of proteins, Protein-DNA interactions
DNAに結合するタンパク質が共通に持つ構造モチーフで、ロイシンジッパー構造など。
DNA結合ドメイン
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2024/04/01 07:52 UTC 版)
DNA結合ドメイン (DNA-binding domain: DBD)とは、二本鎖または一本鎖DNAを認識する少なくとも1つの構造モチーフを構造に含むタンパク質ドメインである。DBDは特定のDNA配列(認識配列)に対して特異的な、またはDNA一般に対して親和性を持つ[1]。一部のDNA結合ドメインは、折り畳まれた構造の核酸も含む。
- ^ Lilley, David M. J. (1995). DNA-protein: structural interactions. Oxford: IRL Press at Oxford University Press. ISBN 0-19-963453-X
- ^ “Allostery in the LacI/GalR family: variations on a theme”. Current Opinion in Microbiology 12 (2): 129–37. (April 2009). doi:10.1016/j.mib.2009.01.009. PMC 2688824. PMID 19269243 .
- ^ “reviewed:yes AND organism:"Homo sapiens (Human) [9606" AND proteome:up000005640 in UniProtKB]” (英語). www.uniprot.org. 2017年10月25日閲覧。
- ^ a b “Genome-wide survey of DNA-binding proteins in Arabidopsis thaliana: analysis of distribution and functions”. Nucleic Acids Research 41 (15): 7212–9. (August 2013). doi:10.1093/nar/gkt505. PMC 3753632. PMID 23775796 .
- ^ “The prokaryotic zinc-finger: structure, function and comparison with the eukaryotic counterpart”. The FEBS Journal 282 (23): 4480–96. (December 2015). doi:10.1111/febs.13503. PMID 26365095.
- ^ “Design and selection of novel Cys2His2 zinc finger proteins”. Annual Review of Biochemistry 70: 313–40. (2001). doi:10.1146/annurev.biochem.70.1.313. PMID 11395410.
- ^ “DNA bridging and looping by HMO1 provides a mechanism for stabilizing nucleosome-free chromatin”. Nucleic Acids Res 42 (14): 8996–9004. (2014). doi:10.1093/nar/gku635. PMC 4132745. PMID 25063301 .
- ^ “Single-molecule studies of high-mobility group B architectural DNA bending proteins”. Biophys Rev 9 (1): 17–40. (2017). doi:10.1007/s12551-016-0236-4. PMC 5331113. PMID 28303166 .
- ^ “Identification and characterization of a previously undescribed family of sequence-specific DNA-binding domains”. Proceedings of the National Academy of Sciences of the United States of America 110 (19): 7660–5. (May 2013). Bibcode: 2013PNAS..110.7660L. doi:10.1073/pnas.1221734110. PMC 3651432. PMID 23610392 .
- ^ a b “Oligonucleotide/oligosaccharide-binding fold proteins: a growing family of genome guardians”. Critical Reviews in Biochemistry and Molecular Biology 45 (4): 266–75. (August 2010). doi:10.3109/10409238.2010.488216. PMC 2906097. PMID 20515430 .
- ^ “Nucleic acid recognition by OB-fold proteins”. Annual Review of Biophysics and Biomolecular Structure 32: 115–33. (2003). doi:10.1146/annurev.biophys.32.110601.142506. PMC 1564333. PMID 12598368 .
- ^ “Xanthomonas AvrBs3 family-type III effectors: discovery and function”. Annual Review of Phytopathology 48: 419–36. (2010). doi:10.1146/annurev-phyto-080508-081936. PMID 19400638.
- ^ “A simple cipher governs DNA recognition by TAL effectors”. Science 326 (5959): 1501. (December 2009). Bibcode: 2009Sci...326.1501M. doi:10.1126/science.1178817. PMID 19933106.
- ^ “Breaking the code of DNA binding specificity of TAL-type III effectors”. Science 326 (5959): 1509–12. (December 2009). Bibcode: 2009Sci...326.1509B. doi:10.1126/science.1178811. PMID 19933107.
- ^ “The crystal structure of TAL effector PthXo1 bound to its DNA target”. Science 335 (6069): 716–9. (February 2012). Bibcode: 2012Sci...335..716M. doi:10.1126/science.1216211. PMC 3427646. PMID 22223736 .
- ^ “Direct observation of TALE protein dynamics reveals a two-state search mechanism”. Nature Communications 6: 7277. (June 2015). Bibcode: 2015NatCo...6.7277C. doi:10.1038/ncomms8277. PMC 4458887. PMID 26027871 .
- ^ “Breaking the DNA-binding code of Ralstonia solanacearum TAL effectors provides new possibilities to generate plant resistance genes against bacterial wilt disease”. The New Phytologist 199 (3): 773–86. (August 2013). doi:10.1111/nph.12324. PMID 23692030.
- ^ “BurrH: a new modular DNA binding protein for genome engineering”. Scientific Reports 4: 3831. (January 2014). Bibcode: 2014NatSR...4E3831J. doi:10.1038/srep03831. PMC 5379180. PMID 24452192 .
- ^ “DNA-binding proteins from marine bacteria expand the known sequence diversity of TALE-like repeats”. Nucleic Acids Research 43 (20): 10065–80. (November 2015). doi:10.1093/nar/gkv1053. PMC 4787788. PMID 26481363 .
- ^ “RNA-guided gene activation by CRISPR-Cas9-based transcription factors”. Nature Methods 10 (10): 973–6. (October 2013). doi:10.1038/nmeth.2600. PMC 3911785. PMID 23892895 .
- ^ “Tunable and multifunctional eukaryotic transcription factors based on CRISPR/Cas”. ACS Synthetic Biology 2 (10): 604–13. (October 2013). doi:10.1021/sb400081r. PMC 3805333. PMID 23977949 .
- ^ “Targeted genome engineering in human cells with the Cas9 RNA-guided endonuclease”. Nature Biotechnology 31 (3): 230–2. (March 2013). doi:10.1038/nbt.2507. PMID 23360966.
- ^ “Cas9 as a versatile tool for engineering biology”. Nature Methods 10 (10): 957–63. (October 2013). doi:10.1038/nmeth.2649. PMC 4051438. PMID 24076990 .
- 1 DNA結合ドメインとは
- 2 DNA結合ドメインの概要
- 3 TALエフェクター
- 4 外部リンク
DNA結合ドメイン
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2019/09/05 14:10 UTC 版)
認識ドメインは、ヘリックスターンヘリックスを含むカタボライト遺伝子活性化タンパク質のDNA結合ドメインに進化的に関連する3つのサブドメイン(D1、D2、D3)で構成される。
※この「DNA結合ドメイン」の解説は、「Fok1」の解説の一部です。
「DNA結合ドメイン」を含む「Fok1」の記事については、「Fok1」の概要を参照ください。
- DNA結合ドメインのページへのリンク