素数の間隔とは? わかりやすく解説

Weblio 辞書 > 辞書・百科事典 > 百科事典 > 素数の間隔の意味・解説 

素数の間隔

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2024/02/11 11:37 UTC 版)

素数の間隔(そすうのかんかく、prime gap)は、連続する2つの素数の差。gn もしくは g(pn) で表される n 番目の素数の間隔は、n + 1 番目の素数と n 番目の素数の差である。すなわち


  1. ^ "Hidden structure in the randomness of the prime number sequence?", S. Ares & M. Castro, 2005
  2. ^ オンライン整数列大辞典の数列 A001223
  3. ^ a b Westzynthius, E. (1931), “Über die Verteilung der Zahlen die zu den n ersten Primzahlen teilerfremd sind” (ドイツ語), Commentationes Physico-Mathematicae Helsingsfors 5: 1-37, JFM 57.0186.02, Zbl 0003.24601 .
  4. ^ Some Results of Research in Computational Number Theory (NEW LARGEST KNOWN PRIME GAP)”. 2021年10月27日閲覧。
  5. ^ The Top-20 Prime Gaps”. 2014年6月13日閲覧。
  6. ^ A proven prime gap of 1113106”. 2021年10月27日閲覧。
  7. ^ a b c NEW PRIME GAP OF MAXIMUM KNOWN MERIT
  8. ^ Dynamic prime gap statistics
  9. ^ TABLES OF PRIME GAPS
  10. ^ 他の記録はA111943で見ることができる。
  11. ^ NEW MAXIMAL PRIME GAPS OF 1530 AND 1550
  12. ^ 他の記録はA005250にあり、A002386の対応する素数pnA005669nの値とともに見ることができる。
  13. ^ Hoheisel, G. (1930). “Primzahlprobleme in der Analysis”. Sitzunsberichte der Königlich Preussischen Akademie der Wissenschaften zu Berlin 33: 3–11. JFM 56.0172.02. 
  14. ^ Heilbronn, H. A. (1933). “Über den Primzahlsatz von Herrn Hoheisel”. Mathematische Zeitschrift 36 (1): 394–423. doi:10.1007/BF01188631. 
  15. ^ Tchudakoff, N. G. (1936). “On the difference between two neighboring prime numbers”. Mat. Sb. 1: 799–814. 
  16. ^ Ingham, A. E. (1937). “On the difference between consecutive primes”. Quarterly Journal of Mathematics. Oxford Series 8 (1): 255–266. Bibcode1937QJMat...8..255I. doi:10.1093/qmath/os-8.1.255. 
  17. ^ Cheng, Yuan-You Fu-Rui (2010). “Explicit estimate on primes between consecutive cubes”. Rocky Mt. J. Math. 40: 117–153. arXiv:0810.2113. doi:10.1216/rmj-2010-40-1-117. Zbl 1201.11111. 
  18. ^ Huxley, M. N. (1972). “On the Difference between Consecutive Primes”. Inventiones Mathematicae 15 (2): 164–170. Bibcode1971InMat..15..164H. doi:10.1007/BF01418933. 
  19. ^ Baker, R. C.; Harman, G.; Pintz, J. (2001). “The difference between consecutive primes, II”. Proceedings of the London Mathematical Society 83 (3): 532–562. doi:10.1112/plms/83.3.532. 
  20. ^ Goldston, D. A.; Pintz, J.; Yildirim, C. Y. (2007). "Primes in Tuples II". arXiv:0710.2728 [math.NT]。
  21. ^ Zhang, Yitang (2014). “Bounded gaps between primes”. Annals of Mathematics 179 (3): 1121–1174. doi:10.4007/annals.2014.179.3.7. MR3171761. 
  22. ^ a b c Bounded gaps between primes”. Polymath. 2013年7月21日閲覧。
  23. ^ Maynard, James (2015). “Small gaps between primes”. Annals of Mathematics 181 (1): 383–413. arXiv:1311.4600. doi:10.4007/annals.2015.181.1.7. MR3272929. 
  24. ^ D.H.J. Polymath (2014). “Variants of the Selberg sieve, and bounded intervals containing many primes”. Research in the Mathematical Sciences 1 (12). arXiv:1407.4897. doi:10.1186/s40687-014-0012-7. MR3373710. 
  25. ^ Pintz, J. (1997). “Very large gaps between consecutive primes”. Journal of Number Theory 63 (2): 286–301. doi:10.1006/jnth.1997.2081. 
  26. ^ Erdős, Paul; Bollobás, Béla; Thomason, Andrew, eds (1997). Combinatorics, Geometry and Probability: A Tribute to Paul Erdös. Cambridge University Press. p. 1. ISBN 9780521584722. https://books.google.com/books?id=1E6ZwSEtPAEC&pg=PA1 
  27. ^ Ford, Kevin; Green, Ben; Konyagin, Sergei; Tao, Terence (2016). “Large gaps between consecutive prime numbers”. Ann. of Math. 183 (3): 935–974. arXiv:1408.4505. doi:10.4007/annals.2016.183.3.4. MR3488740. 
  28. ^ Maynard, James (2016). “Large gaps between primes”. Ann. of Math. 183 (3): 915–933. arXiv:1408.5110. doi:10.4007/annals.2016.183.3.3. MR3488739. 
  29. ^ Ford, Kevin; Green, Ben; Konyagin, Sergei; Maynard, James; Tao, Terence (2018). “Long gaps between primes”. J. Amer. Math. Soc. 31 (1): 65–105. arXiv:1412.5029. doi:10.1090/jams/876. MR3718451. 
  30. ^ Long gaps between primes / What's new”. 2020年3月閲覧。
  31. ^ Ford, Kevin; Maynard, James; Tao, Terence (13 October 2015). "Chains of large gaps between primes". arXiv:1511.04468 [math.NT]。
  32. ^ Cramér, Harald (1936). “On the order of magnitude of the difference between consecutive prime numbers”. Acta Arithmetica 2: 23–46. doi:10.4064/aa-2-1-23-46. http://matwbn.icm.edu.pl/ksiazki/aa/aa2/aa212.pdf. 
  33. ^ Sinha, Nilotpal Kanti (2010). "On a new property of primes that leads to a generalization of Cramer's conjecture". arXiv:1010.1399 [math.NT]。.
  34. ^ Granville, Andrew (1995). “Harald Cramér and the distribution of prime numbers”. Scandinavian Actuarial Journal 1: 12–28. doi:10.1080/03461238.1995.10413946. http://www.dartmouth.edu/~chance/chance_news/for_chance_news/Riemann/cramer.pdf. .
  35. ^ Granville, Andrew (1995). “Unexpected irregularities in the distribution of prime numbers”. Proceedings of the International Congress of Mathematicians 1: 388–399. doi:10.1007/978-3-0348-9078-6_32. ISBN 978-3-0348-9897-3. http://www.dms.umontreal.ca/~andrew/PDF/icm.pdf. .
  36. ^ Pintz, János (September 2007). “Cramér vs. Cramér: On Cramér's probabilistic model for primes”. Functiones et Approximatio Commentarii Mathematici 37 (2): 232–471. doi:10.7169/facm/1229619660. 
  37. ^ a b Guy (2004) §A8





英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  
  •  素数の間隔のページへのリンク

辞書ショートカット

','','','','','','','','','','','','','','','','','',''];function getDictCodeItems(a){return dictCodeList[a]};

すべての辞書の索引

「素数の間隔」の関連用語










10
10% |||||

素数の間隔のお隣キーワード

素描

素揚げ

素数

素数 (企業)

素数が無数に存在することの証明

素数の一覧

素数の間隔

素数冪

素数判定

素数大富豪

素数定数

素数定理

素数計数関数

検索ランキング
';function getSideRankTable(){return sideRankTable};

   

英語⇒日本語
日本語⇒英語
   



素数の間隔のページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアの素数の間隔 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。

©2024 GRAS Group, Inc.RSS