login

Revision History for A144544

(Bold, blue-underlined text is an addition; faded, red-underlined text is a deletion.)

Showing entries 1-10 | older changes
Unique sequence of digits a(0), a(1), a(2), .. such that for all k >= 2, the number A(k) := Sum_{n = 0..k-1 } a(n)*10^n satisfies 16^A(k) == A(k) mod 10^k.
(history; published version)
#18 by Bruno Berselli at Thu Mar 06 18:21:58 EST 2014
STATUS

editing

approved

#17 by Bruno Berselli at Thu Mar 06 18:21:49 EST 2014
EXAMPLE

=616514092059405701876632862258462088380056998252117853367321783700266620705906...

STATUS

proposed

editing

#16 by Michel Marcus at Thu Mar 06 16:23:49 EST 2014
STATUS

editing

proposed

#15 by Michel Marcus at Thu Mar 06 16:23:40 EST 2014
LINKS

J. Jimenez Urroz and J. Luis A. Yebra, <a href="http://www.cs.uwaterloo.ca/journals/JIS/VOL12/Yebra/yebra4.html">On the equation a^x == x (mod b^n), J. Int. Seq. 12 (2009) #09.8.8

J. Jimenez Urroz and J. Luis A. Yebra, <a href="http://www.cs.uwaterloo.ca/journals/JIS/VOL12/Yebra/yebra4.html">On the equation a^x == x (mod b^n), J. Int. Seq. 12 (2009) #09.8.8

STATUS

proposed

editing

#14 by Robert G. Wilson v at Thu Mar 06 15:59:28 EST 2014
STATUS

editing

proposed

#13 by Robert G. Wilson v at Thu Mar 06 15:57:40 EST 2014
LINKS

Robert G. Wilson v, <a href="/A144544/b144544.txt">Table of n, a(n) for n = 0..1024</a>

EXAMPLE

=616514092059405701876632862258462088380056998252117853367321783700266620705906...

#12 by Robert G. Wilson v at Thu Mar 06 14:07:57 EST 2014
DATA

6, 1, 6, 5, 1, 4, 0, 9, 2, 0, 5, 9, 4, 0, 5, 7, 0, 1, 8, 7, 6, 6, 3, 2, 8, 6, 2, 2, 5, 8, 4, 6, 2, 0, 8, 8, 3, 8, 0, 0, 5, 6, 9, 9, 8, 2, 5, 2, 1, 1, 7, 8, 5, 3, 3, 6, 7, 3, 2, 1, 7, 8, 3, 7, 0, 0, 2, 6, 6, 6, 2, 0, 7, 0, 5, 9, 0, 6, 1, 7, 5, 0, 9, 0, 7, 1, 8, 5, 0, 6, 1, 3, 2, 2, 0, 1, 1, 1, 0, 1, 7, 7, 0, 2, 4

REFERENCES

Ilan Vardi, "Computational Recreations in Mathematica," Addison-Wesley Publishing Co., Redwood City, CA, 1991, pages 226-229.

EXAMPLE

=616514092059405701876632862258462088380056998252117853367321783700266620705906...

MATHEMATICA

(* Import Mmca coding for "SuperPowerMod" and "LogStar" from text file in A133612 and then *) $RecursionLimit = 2^14; f[n_] := SuperPowerMod[16, n + 1, 10^n]; Reverse@ IntegerDigits@ f@ 105 (* Robert G. Wilson v, Mar 06 2014 *)

EXTENSIONS

a(68) onward from Robert G. Wilson v, Mar 06 2014

STATUS

approved

editing

#11 by R. J. Mathar at Sat Jun 01 13:56:38 EDT 2013
STATUS

editing

approved

#10 by R. J. Mathar at Sat Jun 01 13:56:34 EDT 2013
REFERENCES

J. Jimenez Urroz and J. Luis A. Yebra, On the equation a^x == x (mod b^n), Preprint, Oct 28 2008.

LINKS

J. Jimenez Urroz and J. Luis A. Yebra, <a href="http://www.cs.uwaterloo.ca/journals/JIS/VOL12/Yebra/yebra4.html">On the equation a^x == x (mod b^n), J. Int. Seq. 12 (2009) #09.8.8

STATUS

approved

editing

#9 by Russ Cox at Fri Mar 30 16:51:00 EDT 2012
AUTHOR

_N. J. A. Sloane (njas(AT)research.att.com), _, Dec 20 2008

Discussion
Fri Mar 30
16:51
OEIS Server: https://oeis.org/edit/global/110