login
A133612
Unique sequence of digits a(0), a(1), a(2), ... such that for all k >= 2, the number A(k) := Sum_{n = 0..k-1} a(n)*10^n satisfies 2^A(k) == A(k) (mod 10^k).
25
6, 3, 7, 8, 4, 9, 2, 3, 4, 3, 5, 3, 5, 7, 0, 5, 1, 6, 8, 9, 0, 8, 3, 3, 3, 5, 8, 9, 5, 1, 0, 0, 6, 2, 7, 8, 6, 9, 6, 8, 2, 5, 5, 4, 1, 0, 7, 5, 4, 2, 6, 8, 2, 6, 1, 4, 8, 2, 8, 2, 1, 2, 1, 2, 1, 9, 0, 7, 2, 9, 8, 3, 5, 5, 8, 9, 8, 9, 7, 1, 0, 4, 9, 0, 5, 2, 2, 0, 9, 1, 7, 8, 8, 8, 6, 5, 2, 2, 4, 4, 8, 3, 7, 1, 0
OFFSET
0,1
COMMENTS
10-adic expansion of the iterated exponential 2^^n (A014221) for sufficiently large n (where c^^n denotes a tower of c's of height n). E.g., for n > 9, 2^^n == 2948736 (mod 10^7).
Sequences A133612-A133619 and A144539-A144544 generalize the observation that 7^343 == 343 (mod 1000).
REFERENCES
M. RipĂ , La strana coda della serie n^n^...^n, Trento, UNI Service, Nov 2011. ISBN 978-88-6178-789-6
Ilan Vardi, "Computational Recreations in Mathematica," Addison-Wesley Publishing Co., Redwood City, CA, 1991, pages 226-229.
LINKS
J. Jimenez Urroz and J. Luis A. Yebra, On the equation a^x == x (mod b^n), J. Int. Seq. 12 (2009) #09.8.8.
EXAMPLE
63784923435357051689083335895100627869682554107542682614828212121907298... - Robert G. Wilson v, Feb 22 2014
2^36 = 68719476736 == 36 (mod 100), 2^736 == 736 (mod 1000), 2^8736 == 8736 (mod 10000), etc.
MATHEMATICA
(* Import Mmca coding for "SuperPowerMod" and "LogStar" from text file and then *) $RecursionLimit = 2^14; f[n_] := SuperPowerMod[2, n + 1, 10^n]; Reverse@ IntegerDigits@ f@ 105 (* Robert G. Wilson v, Feb 22 2014 *)
KEYWORD
nonn,base
AUTHOR
Daniel Geisler (daniel(AT)danielgeisler.com), Dec 18 2007
EXTENSIONS
Edited by N. J. A. Sloane, Dec 22 2007 and Dec 22 2008
More terms from J. Luis A. Yebra, Dec 12 2008
a(68) onward from Robert G. Wilson v, Feb 22 2014
STATUS
approved