login
A133619
Unique sequence of digits a(0), a(1), a(2), ... such that for all k >= 2, the number A(k) := Sum_{n = 0..k-1} a(n)*10^n satisfies 9^A(k) == A(k) (mod 10^k).
17
9, 8, 2, 5, 4, 7, 2, 9, 3, 7, 9, 5, 7, 8, 0, 8, 4, 7, 0, 1, 6, 5, 7, 4, 3, 0, 5, 6, 2, 7, 2, 8, 4, 5, 2, 5, 7, 0, 0, 5, 8, 9, 9, 8, 8, 7, 4, 0, 4, 1, 9, 4, 9, 8, 8, 6, 8, 4, 6, 8, 1, 9, 9, 2, 6, 2, 0, 1, 3, 7, 5, 4, 1, 6, 1, 3, 6, 0, 7, 3, 8, 5, 8, 4, 6, 0, 0, 2, 0, 6, 3, 2, 5, 3, 7, 6, 7, 2, 9, 5, 7, 4, 3, 2, 4
OFFSET
0,1
COMMENTS
10-adic expansion of the iterated exponential 9^^n for sufficiently large n (where c^^n denotes a tower of c's of height n). E.g., for n > 9, 9^^n == 2745289 (mod 10^7).
REFERENCES
M. RipĂ , La strana coda della serie n^n^...^n, Trento, UNI Service, Nov 2011, p. 69-78. ISBN 978-88-6178-789-6.
Ilan Vardi, "Computational Recreations in Mathematica," Addison-Wesley Publishing Co., Redwood City, CA, 1991, pages 226-229.
LINKS
J. Jimenez Urroz and J. Luis A. Yebra, On the equation a^x == x (mod b^n), J. Int. Seq. 12 (2009) #09.8.8.
EXAMPLE
982547293795780847016574305627284525700589988740419498868468199262013754161360...
MATHEMATICA
(* Import Mmca coding for "SuperPowerMod" and "LogStar" from text file in A133612 and then *) $RecursionLimit = 2^14; f[n_] := SuperPowerMod[9, n + 1, 10^n]; Reverse@ IntegerDigits@ f@ 105 (* Robert G. Wilson v, Mar 06 2014 *)
KEYWORD
nonn,base
AUTHOR
Daniel Geisler (daniel(AT)danielgeisler.com), Dec 18 2007
EXTENSIONS
More terms from J. Luis A. Yebra, Dec 12 2008
Edited by N. J. A. Sloane, Dec 22 2008
a(68) onward from Robert G. Wilson v, Mar 06 2014
STATUS
approved