login

Revision History for A053113

(Bold, blue-underlined text is an addition; faded, red-underlined text is a deletion.)

Showing entries 1-10 | older changes
Expansion of (-1 + 1/(1-10*x)^10)/(100*x); related to A053109.
(history; published version)
#15 by Ray Chandler at Sun Oct 01 12:32:54 EDT 2023
STATUS

editing

approved

#14 by Ray Chandler at Sun Oct 01 12:32:51 EDT 2023
LINKS

<a href="/index/Rec#order_10">Index entries for linear recurrences with constant coefficients</a>, signature (100, -4500, 120000, -2100000, 25200000, -210000000, 1200000000, -4500000000, 10000000000, -10000000000).

STATUS

approved

editing

#13 by Charles R Greathouse IV at Thu Sep 08 08:45:00 EDT 2022
PROG

(MAGMAMagma) [10^(n-1)*Binomial(n+10, 9): n in [0..30]]; // G. C. Greubel, Aug 16 2018

Discussion
Thu Sep 08
08:45
OEIS Server: https://oeis.org/edit/global/2944
#12 by Susanna Cuyler at Thu Aug 16 08:56:30 EDT 2018
STATUS

proposed

approved

#11 by Michel Marcus at Thu Aug 16 02:52:31 EDT 2018
STATUS

editing

proposed

#10 by Michel Marcus at Thu Aug 16 02:52:27 EDT 2018
LINKS

W. Lang, <a href="httphttps://www.cs.uwaterloo.ca/journals/JIS/indexVOL3/LANG/lang.html">On generalizations of Stirling number triangles</a>, J. Integer Seqs., Vol. 3 (2000), #00.2.4.

STATUS

proposed

editing

#9 by G. C. Greubel at Thu Aug 16 02:39:46 EDT 2018
STATUS

editing

proposed

#8 by G. C. Greubel at Thu Aug 16 02:39:41 EDT 2018
NAME

Expansion of (-1 + 1/(1-10*x)^10)/(100*x); related to A053109.

LINKS

G. C. Greubel, <a href="/A053113/b053113.txt">Table of n, a(n) for n = 0..400</a>

FORMULA

a(n) = 10^(n-1)*binomial(n+10, 9); G.f. (-1+(1-10*x)^(-10))/(x*10^2).

G.f.: (-1 + (1-10*x)^(-10))/(x*10^2).

MATHEMATICA

Table[10^(n - 1)*Binomial[n + 10, 9], {n, 0, 30}] (* G. C. Greubel, Aug 16 2018 *)

PROG

(PARI) vector(30, n, n--; 10^(n-1)*binomial(n+10, 9)) \\ G. C. Greubel, Aug 16 2018

(MAGMA) [10^(n-1)*Binomial(n+10, 9): n in [0..30]]; // G. C. Greubel, Aug 16 2018

STATUS

approved

editing

#7 by Russ Cox at Sat Mar 31 13:20:00 EDT 2012
AUTHOR

Wolfdieter Lang (wolfdieter.lang(AT)physik.uni-karlsruhe.de)

Wolfdieter Lang

Discussion
Sat Mar 31
13:20
OEIS Server: https://oeis.org/edit/global/878
#6 by N. J. A. Sloane at Fri Feb 24 03:00:00 EST 2006
FORMULA

a(n) = 10^(n-1)*binomial(n+10, 9); G.f. (-1+(1-10*x)^(-10))/(x*10^2).

KEYWORD

easy,nonn,new