login

A053113 revision #10


A053113
Expansion of (-1 + 1/(1-10*x)^10)/(100*x); related to A053109.
4
1, 55, 2200, 71500, 2002000, 50050000, 1144000000, 24310000000, 486200000000, 9237800000000, 167960000000000, 2939300000000000, 49742000000000000, 817190000000000000, 13075040000000000000, 204297500000000000000
OFFSET
0,2
COMMENTS
This is the tenth member of the k-family of sequences a(k,n) := k^(n-1)*binomial(n+k,k-1) starting with A000012 (powers of 1), A001792, A036068, A036070, A036083, A036224, A053110-113 for k=1..10.
LINKS
W. Lang, On generalizations of Stirling number triangles, J. Integer Seqs., Vol. 3 (2000), #00.2.4.
FORMULA
a(n) = 10^(n-1)*binomial(n+10, 9).
G.f.: (-1 + (1-10*x)^(-10))/(x*10^2).
MATHEMATICA
Table[10^(n - 1)*Binomial[n + 10, 9], {n, 0, 30}] (* _G. C. Greubel_, Aug 16 2018 *)
PROG
(PARI) vector(30, n, n--; 10^(n-1)*binomial(n+10, 9)) \\ _G. C. Greubel_, Aug 16 2018
(MAGMA) [10^(n-1)*Binomial(n+10, 9): n in [0..30]]; // _G. C. Greubel_, Aug 16 2018
CROSSREFS
Sequence in context: A217758 A346325 A240687 * A012048 A215860 A020536
KEYWORD
easy,nonn
AUTHOR
_Wolfdieter Lang_
STATUS
editing