login
A053109
Expansion of 1/(1-10*x)^10.
4
1, 100, 5500, 220000, 7150000, 200200000, 5005000000, 114400000000, 2431000000000, 48620000000000, 923780000000000, 16796000000000000, 293930000000000000, 4974200000000000000, 81719000000000000000
OFFSET
0,2
COMMENTS
This is the tenth member of the k-family of sequences a(k,n) := k^n*binomial(n+k-1,k-1) starting with A000012 (powers of 1), A001787(n+1), A027472(n+3), A038846, A036071, A036084, A036226, A053107-9 for k=1..10.
LINKS
Index entries for linear recurrences with constant coefficients, signature (100, -4500, 120000, -2100000, 25200000, -210000000, 1200000000, -4500000000, 10000000000, -10000000000).
FORMULA
a(n) = 10^n*binomial(n+9, 9);
G.f.: 1/(1-10*x)^10.
MAPLE
seq(coeff(series(1/(1-10*x)^10, x, n+1), x, n), n = 0 .. 15); # Muniru A Asiru, Aug 16 2018
MATHEMATICA
CoefficientList[Series[1/(1-10x)^10, {x, 0, 20}], x] (* or *) Table[10^n Binomial[n+9, 9], {n, 0, 20}] (* Harvey P. Dale, May 19 2011 *)
PROG
(Sage)[lucas_number2(n, 10, 0)*binomial(n, 9)/10 ^9 for n in range(9, 24)] # Zerinvary Lajos, Mar 13 2009
(PARI) vector(30, n, n--; 10^n*binomial(n+9, 9)) \\ G. C. Greubel, Aug 16 2018
(Magma) [10^n*Binomial(n+9, 9): n in [0..30]]; // G. C. Greubel, Aug 16 2018
(GAP) List([0..15], n->10^n*Binomial(n+9, 9)); # Muniru A Asiru, Aug 16 2018
CROSSREFS
Sequence in context: A035810 A017763 A204081 * A151647 A245666 A210814
KEYWORD
easy,nonn
STATUS
approved