login
A053116
a(n) = ((9*n+10)(!^9))/10, related to A045756 ((9*n+1)(!^9) 9-factorials).
5
1, 19, 532, 19684, 905464, 49800520, 3187233280, 232668029440, 19078778414080, 1736168835681280, 173616883568128000, 18924240308925952000, 2233060356453262336000, 283598665269564316672000
OFFSET
0,2
COMMENTS
Row m=10 of the array A(10; m,n) := ((9*n+m)(!^9))/m(!^9), m >= 0, n >= 0.
LINKS
FORMULA
a(n) = ((9*n+10)(!^9))/10(!^9) = A045756(n+2)/10.
E.g.f.: 1/(1-9*x)^(19/9).
MATHEMATICA
s=1; lst={s}; Do[s+=n*s; AppendTo[lst, s], {n, 18, 3*5!, 9}]; lst (* Vladimir Joseph Stephan Orlovsky, Nov 08 2008 *)
With[{nmax = 50}, CoefficientList[Series[1/(1 - 9*x)^(19/9), {x, 0, nmax}], x]*Range[0, nmax]!] (* G. C. Greubel, Aug 26 2018 *)
PROG
(PARI) x='x+O('x^25); Vec(serlaplace(1/(1 - 9*x)^(19/9))) \\ G. C. Greubel, Aug 26 2018
(Magma) m:=25; R<x>:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!( 1/(1 - 9*x)^(19/9))); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, Aug 26 2018
CROSSREFS
Cf. A051232, A045756, A035012-3, A035017-8, A035020-3 (rows m=0..9).
Sequence in context: A283382 A196512 A027406 * A309313 A158211 A278184
KEYWORD
easy,nonn
STATUS
approved