login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A375908
Sphenic numbers that are sandwiched between products of exactly 4 distinct primes (or tetraprimes).
0
18446, 39766, 74306, 83434, 94106, 100346, 107966, 111154, 111814, 113366, 140834, 144754, 145606, 146014, 147406, 149854, 154946, 155702, 156146, 165346, 171786, 189034, 190618, 191806, 197354, 201686, 203314, 206194, 211394, 211946, 219386, 231286, 234394, 253114, 258266, 262294, 263966
OFFSET
1,1
COMMENTS
Terms are of the form 4*k+2.
EXAMPLE
18446 = 2 * 23 * 401 (between 18445 = 5*7*17*31 and 18447 = 3*11*13*43).
39766 = 2 * 59 * 337 (between 39765 = 3*5*11*241 and 39767 = 7*13*19*23).
74306 = 2 * 53 * 701 (between 74305 = 5*7*11*193 and 74307 = 3*17*31*47).
MAPLE
N:= 5*10^5: # for terms <= N
P:= select(isprime, [seq(i, i=3..N/3, 2)]): nP:= nops(P):
R:= NULL:
for i from 1 to nP while 2*P[i]*P[i+1] <= N do
for j from i+1 to nP do
x:= 2*P[i]*P[j];
if x > N then break fi;
if numtheory:-bigomega(x-1) = 4 and numtheory:-bigomega(x+1) = 4 and
numtheory:-issqrfree(x-1) and numtheory:-issqrfree(x+1) then
R:= R, x
fi
od od:
sort([R]); # Robert Israel, Sep 02 2024
MATHEMATICA
e[n_] := FactorInteger[n][[;; , 2]]; SequencePosition[e /@ Range[300000], {{1, 1, 1, 1}, {1, 1, 1}, {1, 1, 1, 1}}][[;; , 1]] + 1 (* Amiram Eldar, Sep 02 2024 *)
CROSSREFS
Cf. A007304, A046386. Subsequence of A075819.
Sequence in context: A231142 A251874 A035924 * A209895 A190110 A157738
KEYWORD
nonn
AUTHOR
Massimo Kofler, Sep 02 2024
STATUS
approved